×

Two-grid finite volume element method for linear and nonlinear elliptic problems. (English) Zbl 1134.65077

First the finite volume element method (FVEM) is applied to solve the two-dimensional problem
\[ -\nabla \cdot (\mathbf{a} \nabla u )+ \mathbf{b} \cdot \nabla u +cu=f \quad \text{in} \quad \Omega\subset \mathbb{R}^{2} \]
\[ u=0 \qquad \text{on} \quad \partial \Omega. \]
\(\Omega \) is a convex bounded convex polygonal domain and a symmetric and positive definite. The idea of the two-grid method is to reduce the non-selfadjoint and indefinite elliptic problem on a fine grid into a symmetric and positive definite elliptic problem on a fine grid by solving a non-selfadjoint and indefinite elliptic problem on a coarse grid.
In the last section the authors consider the FVEM for the two-dimensional second-order nonlinear elliptic problem with homogeneous boundary condition for \[ -\nabla \cdot (A(u) \nabla u )=f. \]

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
Full Text: DOI

References:

[1] Axelsson O. and Layton W. (1996). A two-level discretization of nonlinear boundary value problems. SIAM J. Numer. Anal. 33: 2359–2374 · Zbl 0866.65077 · doi:10.1137/S0036142993247104
[2] Baliga B.R. and Patankar S.V. (1980). A new finite element formulation for convection–diffusion problems. Numer. Heat Transf. 3: 393–410 · doi:10.1080/01495728008961767
[3] Bank R.E. and Rose D.J. (1987). Some error estimates for the box method. SIAM J. Numer. Anal. 24: 777–787 · Zbl 0634.65105 · doi:10.1137/0724050
[4] Bi C.J. and Li L.K. (2003). The mortar finite volume element method with the Crouzeix-Raviart element for elliptic problems. Comp. Methods. Appl. Mech. Eng. 192: 15–31 · Zbl 1023.65122 · doi:10.1016/S0045-7825(02)00494-2
[5] Bi C.J. (2007). Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods PDEs 23: 220–233 · Zbl 1119.65105
[6] Brenner S. and Scott R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Heidelberg · Zbl 0804.65101
[7] Cai Z. (1991). On the finite volume element method. Numer. Math. 58: 713–735 · Zbl 0731.65093 · doi:10.1007/BF01385651
[8] Chatzipantelidis P. (2002). Finite volume methods for elliptic PDE’s: a new approach. Math. Model. Numer. Anal. 36: 307–324 · Zbl 1041.65087 · doi:10.1051/m2an:2002014
[9] Chatzipantelidis P., Ginting V. and Lazarov R.D. (2005). A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12: 515–546 · Zbl 1164.65494 · doi:10.1002/nla.439
[10] Chou S.H. and Li Q. (2000). Error estimates in L 2, H 1 and L in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69: 103–120 · Zbl 0936.65127 · doi:10.1090/S0025-5718-99-01192-8
[11] Chou S.H. and Kwak D.Y. (2002). Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90: 459–486 · Zbl 0995.65127 · doi:10.1007/s002110100288
[12] Ciarlet P. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam · Zbl 0383.65058
[13] Dawson C.N., Wheeler M.F. and Woodward C.S. (1998). A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35: 435–452 · Zbl 0927.65107 · doi:10.1137/S0036142995293493
[14] Ewing R.E., Lin T. and Lin Y.P. (2002). On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39: 1865–1888 · Zbl 1036.65084 · doi:10.1137/S0036142900368873
[15] Grisvard P. (1985). Elliptic Problems in Nonsmooth Domain. Pitman Advanced Pub. Program, Boston · Zbl 0695.35060
[16] Huang J.G. and Xi S.T. (1998). On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35: 1762–1774 · Zbl 0913.65097 · doi:10.1137/S0036142994264699
[17] Layton W. and Lenferink W. (1995). Two-level Picard and modified Picard methods for the Navier–Stokes equations. Appl. Math. Comp. 69: 263–274 · Zbl 0828.76017 · doi:10.1016/0096-3003(94)00134-P
[18] Liang S.H., Ma X.L. and Zhou A.H. (2002). A symmetric finite volume scheme for selfadjoint elliptic problems. J. Comput. Appl. Math. 147: 121–136 · Zbl 1027.65150 · doi:10.1016/S0377-0427(02)00428-4
[19] Li R.H. (1987). Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24: 77–88 · Zbl 0626.65091 · doi:10.1137/0724007
[20] Li R.H., Chen Z.Y. and Wei W. (2000). Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York · Zbl 0940.65125
[21] Lin Q. and Zhu Q. (1994). The Preprocessing and Postprocessing for the Finite Element Methods. (in Chinese). Shanghai Scientific and Technical Publishers, Shanghai
[22] Marion M. and Xu J.C. (1995). Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32: 1170–1184 · Zbl 0853.65092 · doi:10.1137/0732054
[23] Mishev I.D. (1999). Finite volume element methods for non-definite problems. Numer. Math. 83: 161–175 · Zbl 0938.65131 · doi:10.1007/s002110050443
[24] Rannacher R. and Scott R. (1982). Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 15: 1–22 · Zbl 0483.65007
[25] Schatz A.H. (1974). An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28: 959–962 · Zbl 0321.65059 · doi:10.1090/S0025-5718-1974-0373326-0
[26] Shi Z.C., Xu X.J. and Man H.Y. (2004). Cascadic multigrid for finite volume methods for elliptic problems. J. Comput. Math. 22: 905–920 · Zbl 1069.65137
[27] Utnes T. (1997). Two-grid finite element formulations of the incompressible Navier–Stokes equation. Comm. Numer. Methods Eng. 34: 675–684 · Zbl 0883.76052 · doi:10.1002/(SICI)1099-0887(199708)13:8<675::AID-CNM98>3.0.CO;2-N
[28] Wu H.J. and Li R.H. (2003). Error estimates for finite volume element methods for general second order elliptic problem. Numer. Methods PDEs 19: 693–708 · Zbl 1040.65091
[29] Xu J.C. (1992). A new class of iterative methods for nonselfadjoint or indefinite elliptic problems. SIAM J. Numer. Anal. 29: 303–319 · Zbl 0756.65050 · doi:10.1137/0729020
[30] Xu J.C. (1994). A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15: 231–237 · Zbl 0795.65077 · doi:10.1137/0915016
[31] Xu J.C. (1996). Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33: 1759–1777 · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[32] Xu J.C. and Zhou A.H. (1999). A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70: 17–25 · Zbl 0959.65119 · doi:10.1090/S0025-5718-99-01180-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.