×

Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds. (English) Zbl 1141.53061

Summary: In this paper, we discuss Donaldson’s version of the modified \(K\)-energy associated to Calabi’s extremal metrics on toric manifolds and prove the existence of the weak solution for extremal metrics in the sense of convex functions which minimizes the modified \(K\)-energy.

MSC:

53C43 Differential geometric aspects of harmonic maps
32J15 Compact complex surfaces
53C55 Global differential geometry of Hermitian and Kählerian manifolds
58E11 Critical metrics

References:

[1] Abreu M. (1998). Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9: 641–651 · Zbl 0932.53043 · doi:10.1142/S0129167X98000282
[2] Calabi, E.: Extremal Kähler metrics. Seminar on Differential Geometry, Annals of Mathematical Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)
[3] Donaldson S.K. (2001). Scalar curvature and projective embeddings, I. J. Diff. Geom. 59: 479–522 · Zbl 1052.32017
[4] Donaldson S.K. (2002). Scalar curvature and stability of toric varieties. J. Diff. Geom. 62: 289–349 · Zbl 1074.53059
[5] Donaldson S.K. (2005). Interior estimates for solutions of Abreu’s equation. Collect. Math. 56: 103–142 · Zbl 1085.53063
[6] Futaki A. and Mabuchi T. (1995). Bilinear forms and extremal Kähler vector fields associated with Kähler class. Math. Ann. 301: 199–210 · Zbl 0831.53042 · doi:10.1007/BF01446626
[7] Guan D. (1999). On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundle. Math. Res. Lett. 6: 547–555 · Zbl 0968.53050
[8] Guillemin V. (1994). Monent Maps and Combinatorial Invariants of Hamiltonian T n -Spaces, Progress in Mathematics. Birkhäuser, Boston · Zbl 0828.58001
[9] Mabuchi T. (2005). An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I. Invent. Math. 159: 225–243 · Zbl 1118.53047 · doi:10.1007/s00222-004-0387-y
[10] Mabuchi, T.: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II, (2004, preprint) · Zbl 1209.53032
[11] Tian G. (1997). Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130: 1–39 · Zbl 0892.53027 · doi:10.1007/s002220050176
[12] Trudinger N.S. and Wang X.J. (2000). A Bernstein problem in the affine geometry. Invent. Math. 140: 253–289 · Zbl 0978.53021 · doi:10.1007/s002220000059
[13] Trudinger N.S. and Wang X.J. (2005). The affine plateau problem. J. Am. Math. Soc. 18: 253–289 · Zbl 1229.53049 · doi:10.1090/S0894-0347-05-00475-3
[14] Zhou, B., Zhu, X.H.: Relative K-stability and modified K-energy on toric manifolds, Arxiv: math.DG/0603237 · Zbl 1153.53030
[15] Zhou, B., Zhu, X.H.: A note on the K-stability on toric manifolds, Arxiv:math.DG/0706.0505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.