×

The affine Plateau problem. (English) Zbl 1229.53049

Summary: We study a second order variational problem for locally convex hypersurfaces, which is the affine invariant analogue of the classical Plateau problem for minimal surfaces. We prove existence, regularity and uniqueness results for hypersurfaces maximizing affine area under appropriate boundary conditions.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35J40 Boundary value problems for higher-order elliptic equations
35J60 Nonlinear elliptic equations
53A15 Affine differential geometry

References:

[1] W. Blaschke, Vorlesungen über Differential geometrie, Berlin, 1923.
[2] L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2) 131 (1990), no. 1, 129 – 134. · Zbl 0704.35045 · doi:10.2307/1971509
[3] Luis A. Caffarelli, Interior \?^{2,\?} estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135 – 150. · Zbl 0704.35044 · doi:10.2307/1971510
[4] Luis A. Caffarelli and Cristian E. Gutiérrez, Properties of the solutions of the linearized Monge-Ampère equation, Amer. J. Math. 119 (1997), no. 2, 423 – 465. · Zbl 0878.35039
[5] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369 – 402. · Zbl 0598.35047 · doi:10.1002/cpa.3160370306
[6] Eugenio Calabi, Hypersurfaces with maximal affinely invariant area, Amer. J. Math. 104 (1982), no. 1, 91 – 126. · Zbl 0501.53037 · doi:10.2307/2374069
[7] Eugenio Calabi, Affine differential geometry and holomorphic curves, Complex geometry and analysis (Pisa, 1988) Lecture Notes in Math., vol. 1422, Springer, Berlin, 1990, pp. 15 – 21. · Zbl 0697.53019 · doi:10.1007/BFb0089401
[8] Shiu Yuen Cheng and Shing-Tung Yau, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986), no. 6, 839 – 866. · Zbl 0623.53002 · doi:10.1002/cpa.3160390606
[9] Shiing Shen Chern, Affine minimal hypersurfaces, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977) North-Holland, Amsterdam-New York, 1979, pp. 17 – 30. · Zbl 0439.53008
[10] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[11] Bo Guan and Joel Spruck, Boundary-value problems on \?\(^{n}\) for surfaces of constant Gauss curvature, Ann. of Math. (2) 138 (1993), no. 3, 601 – 624. · Zbl 0840.53046 · doi:10.2307/2946558
[12] N. M. Ivočkina, A priori estimate of |\?|_{\?\(_{2}\)(\overline\Omega )} of convex solutions of the Dirichlet problem for the Monge-Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 69 – 79, 306 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 12.
[13] N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. · Zbl 0619.35004
[14] Kurt Leichtweiß, Affine geometry of convex bodies, Johann Ambrosius Barth Verlag, Heidelberg, 1998. · Zbl 0899.52005
[15] Erwin Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39 – 68. · Zbl 0727.53016 · doi:10.1016/0001-8708(91)90049-D
[16] Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994. Geometry of affine immersions. · Zbl 0834.53002
[17] Aleksey Vasil\(^{\prime}\)yevich Pogorelov, The Minkowski multidimensional problem, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg; Scripta Series in Mathematics.
[18] M. V. Safonov, Classical solution of second-order nonlinear elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1272 – 1287, 1328 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 3, 597 – 612.
[19] W.M. Sheng, N.S. Trudinger, and X.-J. Wang, Enclosed convex hypersurfaces with maximal affine area, preprint. · Zbl 1090.53014
[20] Udo Simon, Affine differential geometry, Handbook of differential geometry, Vol. I, North-Holland, Amsterdam, 2000, pp. 905 – 961. · Zbl 0972.53001 · doi:10.1016/S1874-5741(00)80012-6
[21] Neil S. Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000), no. 2, 399 – 422. · Zbl 0978.53021 · doi:10.1007/s002220000059
[22] Neil S. Trudinger and Xu-Jia Wang, On locally convex hypersurfaces with boundary, J. Reine Angew. Math. 551 (2002), 11 – 32. · Zbl 1020.53002 · doi:10.1515/crll.2002.078
[23] N.S. Trudinger and X.-J. Wang, On boundary regularity for the Monge-Ampère and affine maximal surface equations, preprint. · Zbl 1176.35046
[24] Xu-Jia Wang, Affine maximal hypersurfaces, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 221 – 231. · Zbl 1136.35373
[25] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.