×

An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. II. (English) Zbl 1209.53032

Summary: Recently, Donaldson proved asymptotic stability for a polarized algebraic manifold \(M\) with polarization class admitting a Kähler metric of constant scalar curvature, essentially when the linear algebraic part \(H\) of Aut\(^{0}(M)\) is semisimple. The purpose of this paper is to give a generalization of Donaldson’s result to the case where the polarization class admits an extremal Kähler metric, even when \(H\) is not semisimple.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
14L24 Geometric invariant theory
32Q15 Kähler manifolds
32Q20 Kähler-Einstein manifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds

References:

[1] E. Calabi: Extremal Kähler metrics , II; in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 95–114. · Zbl 0574.58006
[2] D. Catlin: The Bergman kernel and a theorem of Tian ; in Analysis and Geometry in Several Complex Variables (Katata, 1997), Birkhäuser, Boston, Boston, MA, 1999, 1–23. · Zbl 0941.32002
[3] S.K. Donaldson: Scalar curvature and projective embeddings , I, J. Differential Geom. 59 (2001), 479–522. · Zbl 1052.32017
[4] A. Fujiki: The moduli spaces and Kähler metrics of polarized algebraic varieties , Sugaku 42 (1990), 231–243, English translation: Sugaku Expositions 5 (1992), 173–191. · Zbl 0763.32012
[5] A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associated with symplectic classes , Asian J. Math. 6 (2002), 349–372. · Zbl 1047.53053
[6] D. Gieseker: Global moduli for surfaces of general type , Invent. Math. 43 (1977), 233–282. · Zbl 0389.14006 · doi:10.1007/BF01390081
[7] S. Helgason: Differential Geometry and Symmetric Spaces, Pure and Appl. Math. 12 , Academic Press, New York, 1962. · Zbl 0111.18101
[8] S. Kobayashi: Transformation Groups in Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972. · Zbl 0246.53031
[9] A. Lichnérowicz: Isométrie et transformations analytique d’une variété kählérienne compacte , Bull. Soc. Math. France 87 (1959), 427–437. · Zbl 0192.28403
[10] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch , Amer. J. Math. 122 (2000), 235–273. · Zbl 0972.53042 · doi:10.1353/ajm.2000.0013
[11] M. Lübke and A. Teleman: The Kobayashi-Hitchin Correspondence, World-Scientific, Singapore, 1995.
[12] T. Mabuchi: The Hitchin-Kobayashi correspondence for vector bundles and manifolds ; in Proc. 48th Geometry Symposium, Ibaraki, August, 2001, 461–468, (Japanese).
[13] T. Mabuchi: An obstruction to asymptotic semistability and approximate critical metrics , Osaka J. Math. 41 (2004), 463–472, · Zbl 1070.58012
[14] T. Mabuchi: Stability of extremal Kähler manifolds , Osaka J. Math. 41 (2004), 563–582, · Zbl 1076.32017
[15] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds , I, Invent. Math. 159 (2005), 225–243. · Zbl 1118.53047 · doi:10.1007/s00222-004-0387-y
[16] T. Mabuchi: Uniqueness of extremal Kähler metrics for an integral Kähler class , Internat. J. Math. 15 (2004), 531–546. · Zbl 1058.32017 · doi:10.1142/S0129167X04002429
[17] T. Mabuchi and Y. Nakagawa: Erratum: The Bando-Calabi-Futaki character as an obstruction to semistability , Math. Ann. 330 (2004), 627–630. · Zbl 1061.32017 · doi:10.1007/s00208-004-0584-4
[18] D. Mumford: Varieties defined by quadratic equations ; in Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Ed. Cremonese, Rome, 1970, 29–100. · Zbl 0198.25801
[19] T. Mabuchi and L. Weng: Kähler-Einstein metrics and Chow-Mumford stability , 1998,
[20] D. Mumford, J. Fogarty and F. Kirwan: Geometric Invariant Theory, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34 , Springer, Berlin, 1994. · Zbl 0797.14004
[21] D.H. Phong and J. Sturm: Scalar curvature, moment maps, and the Deligne pairing , · Zbl 1077.53068 · doi:10.1353/ajm.2004.0019
[22] G. Tian: On a set of polarized Kähler metrics on algebraic manifolds , J. Differential Geom. 32 (1990), 99–130. · Zbl 0706.53036
[23] G. Tian: Kähler-Einstein metrics with positive scalar curvature , Invent. Math. 130 (1997), 1–37. · Zbl 0892.53027 · doi:10.1007/s002220050176
[24] E. Viehweg: Quasi-Projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 30 , Springer, Berlin, 1995. · Zbl 0844.14004
[25] S. Zelditch: Szegő kernels and a theorem of Tian , Internat. Math. Res. Notices 6 (1998), 317–331. · Zbl 0922.58082 · doi:10.1155/S107379289800021X
[26] S. Zhang: Heights and reductions of semi-stable varieties , Compositio Math. 104 (1996), 77–105. · Zbl 0924.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.