×

Poincaré’s variational problem in potential theory. (English) Zbl 1119.31001

Summary: One of the earliest attempts to rigorously prove the solvability of Dirichlet’s boundary value problem was based on seeking the solution in the form of a “potential of double layer”, and this leads to an integral equation whose kernel is (in general) both singular and non-symmetric. C. Neumann succeeded with this approach for smoothly bounded convex domains, and H. Poincaré, by a tremendous tour de force, showed how to push through the analysis for domains with sufficiently smooth boundaries but no hypothesis of convexity. In his work he was (according to his own account) guided by consideration of a variational problem involving the partition of energy of an electrostatic field induced by charges placed on the boundary of a domain, more precisely the charge distributions which render stationary the energy of the field inside the domain divided by the energy of the field outside the domain.
Unfortunately, a rigorous treatment of this problem was not possible with the tools available at that time (as Poincaré was well aware). So far as we know, the only one to propose a rigorous treatment of Poincaré’s problem was T. Carleman (in the two-dimensional case) in his doctoral dissertation. Thanks to later developments (especially concerning Sobolev spaces, and spectral theory of operators on Hilbert space) we can now give a complete, general and rigorous account of Poincaré’s variational problem, and that is the main object of the present paper. As a by-product, we refine some technical aspects in the theory of symmetrizable operators and prove in any number of dimensions the basic properties of the analogue of the planar Bergman-Schiffer singular integral equation. We interpret Poincaré’s variational principle as a non-selfadjoint eigenvalue problem for the angle operator between two distinct pairs of subspaces of potentials. We also prove a series of novel spectral analysis facts (some of them conjectured by Poincaré) related to the Poincaré-Neumann integral operator.

MSC:

31B10 Integral representations, integral operators, integral equations methods in higher dimensions
49K10 Optimality conditions for free problems in two or more independent variables
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
31-02 Research exposition (monographs, survey articles) pertaining to potential theory
35J25 Boundary value problems for second-order elliptic equations
47A10 Spectrum, resolvent
Full Text: DOI

References:

[1] Ahlfors L.V. (1952) Remarks on the Neumann-Poincaré integral equation. Pacific J. Math. 3, 271-280 · Zbl 0047.07907 · doi:10.2140/pjm.1952.2.271
[2] Bergman S.: The Kernel Function and Conformal Mapping 2nd ed. Mathematical Surveys. 5, Providence, R.I., American Mathematical Society, 1970 · Zbl 0208.34302
[3] Bergman S., Schiffer M. (1951) Kernel functions and conformal mapping. Compos. Math. 8, 205-249 · Zbl 0043.08403
[4] Burkhardt H., Meyer W.F. Potentialtheorie (Theorie der Laplace-Poissonschen) Differentialgleichung. Encyklopädie der Mathematischen Wissenschaften- Analysis, vol. II A 7b, Teubner, Leipzig, 1909-1921; pp. 464-503
[5] Carleman T., (1916) Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken. Almquist and Wiksells, Uppsala · JFM 46.0732.04
[6] Deny J. (1950) Sur la définition de l’énergie en théorie du potentiel. Ann. Inst. Fourier 2, 83-99 · Zbl 0042.33602 · doi:10.5802/aif.22
[7] Dunford N., Schwartz J.T.: Linear Operators, Vol. I, II. Interscience, New York, 1958, 1963 · Zbl 0084.10402
[8] Ebenfelt P., Khavinson D., Shapiro H.S. (2001) An inverse problem for the double layer potential. Comput. Methods Funct. Theory 1, 387-401 · Zbl 1013.31001 · doi:10.1007/BF03320998
[9] Ebenfelt P., Khavinson D., Shapiro H.S. (2002) A free boundary problem related to single-layer potentials. Ann. Acad. Sci. Fenn. Math. 27, 21-46 · Zbl 1035.31001
[10] Fredholm I. (1903) Sur une classe d’équations fonctionnelles. Acta Math. 27, 365-390 · JFM 34.0422.02 · doi:10.1007/BF02421317
[11] Friedrichs K.O., Lax P.D. (1967) On symmetrizable differential operators. Proc. Sympos. Pure Math., Amer. Math. Soc. Providence, R.I. 10, 128-137 · Zbl 0184.36603 · doi:10.1090/pspum/010/0239256
[12] Gaier D. (1962) Über die Symmetrisierbarkeit des Neumannschen Kerns. Z. Angew. Math. Mech. 42, 569-570 · Zbl 0116.07602 · doi:10.1002/zamm.19620421209
[13] Gohberg I.C., Krein M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. Amer. Math. Soc. Translations Vol. 18, Amer. Math. Soc., Providence, R.I., 1969 · Zbl 0181.13504
[14] Günther N.M., (1957) Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik. Teubner, Leipzig · Zbl 0077.09702
[15] Hellinger E., Toeplitz O.: Integralgleichungen und Gleichungen mit vielen unendlich Unbekanten. Encyklopädie der Mathematischen Wissenschaften- Analysis, vol. II C 13, Teubner, Leipzig, 1909-1921; reprint in book format by Chelsea, New York, NY, 1953
[16] Hilbert D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig, 1912 ; reprint Chelsea, New York, 1953 · JFM 43.0423.01
[17] Kellogg O.D., (1929) Foundations of Potential Theory. J. Springer, Berlin · JFM 55.0282.01 · doi:10.1007/978-3-642-90850-7
[18] Korn A., (1899) Lehrbuch der Potentialtheorie 2 vol. Dümmler Verlag, Berlin · JFM 30.0690.05
[19] Korn A.: Eine Theorie der linearen Integralgleichungen mit unsymmetrischen kernen. Tohoku J. Math. 1, 159-186 (1911-1912); part II, ibidem, 2, 117-136 (1912-1913) · JFM 43.0425.02
[20] Korn A. (1913) Über die erste und zweite Randwertaufgabe der Potentialtheorie. Rend. Circ. Matem. Palermo 35, 317-323 · JFM 44.0876.01 · doi:10.1007/BF03015612
[21] Korn A.: Über die Anwendung zur Lösung von lineare Integralgleichungen mit unsymmetrischen Kernen. Arch. Math. 25, 148-173 (1916); part II, ibidem, 27, 97-120 (1918) · JFM 46.0653.03
[22] Krein M.G.: Compact linear operators on functional spaces with two norms. (Ukrainian), Sbirnik Praz. Inst. Mat. Akad. Nauk Ukrainsk SSR9, 104-129 (1947); English translation in: Integral Equations Operator Theory30, 140-162 (1998) · Zbl 0914.47002
[23] Kupradze V.D. (ed), (1979) Three Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North Holland, Amsterdam · Zbl 0406.73001
[24] Lalesco T., (1912) Introduction à la Théorie des Équations Intégrales. Hermann, Paris · JFM 43.0438.05
[25] Lalesco T. (1917) Les classes de noyaux symmetrisables. Bull. Soc. Math. France 45, 144-149 · JFM 46.0624.01 · doi:10.24033/bsmf.979
[26] Landkof N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer, Berlin, 1972 · Zbl 0253.31001
[27] Lax P. (1956) Symmetrizable linear transformations. Comm. Pure Appl. Math. 7, 633-647 · Zbl 0057.34402 · doi:10.1002/cpa.3160070403
[28] Lichtenstein L.: Neuere Entwicklung der Potential-Theorie. Konforme Abbildung. Encyklopädie der Mathematischen Wissenschaften- Analysis, vol. II C 3, Teubner, Leipzig, pp. 177-378, 1909-1921
[29] Lions J.L., Magenes E., (1972) Non-homogeneous Boundary Value Problems and Applications Vol I. Springer, Berlin · Zbl 0223.35039 · doi:10.1007/978-3-642-65161-8
[30] Marty J. (1910) Valeurs singulières d’une équation de Fredholm. C.R. Math. Acad. Sci. Paris 150, 1499-1502 · JFM 41.0385.02
[31] Maz’ya V.G.: Boundary integral equations. Analysis IV. Linear and boundary integral equations (V.G. Maz’ya and S. M. Nikol’skii eds.). Encycl. Math. Sci. vol. 27, Springer, Berlin, pp. 127-222, 1991 · Zbl 0778.00012
[32] Mercer J. (1920) Symmetrisable functions and their expansion in terms of biorthogonal functions. Proc. Royal Soc. (A) 97: 401-413 · JFM 47.0376.01 · doi:10.1098/rspa.1920.0041
[33] Neumann C. \"Uber die Methode des arithmetischen Mittels, Erste and zweite Abhandlung, Leipzig 1887/88, in Abh. d. Kgl. Sächs Ges. d. Wiss., IX and XIII. · JFM 19.1029.01
[34] Pell A.J. (1911) Applications of biorthogonal systems of functions to the theory of integral equations. Trans. Amer. Math. Soc. 12, 165-180 · JFM 42.0369.03 · doi:10.1090/S0002-9947-1911-1500885-X
[35] Plemelj J., (1911) Potentialtheoretische Untersuchungen. Teubner, Leipzig · JFM 42.0828.10
[36] Poincaré H. (1897) La méthode de Neumann et le problème de Dirichlet. Acta Math. 20, 59-152 · JFM 27.0316.01 · doi:10.1007/BF02418028
[37] Poincaré H., (1899) Théorie du Potentiel Newtonien. Carré et Náud, Paris · JFM 30.0692.01
[38] Radon J.: Über lineare Funktionaltransformationen und Funktionalgleichungen. Sitz. Akad. Wiss. Wien, Band 12, Heft 7, 1083-1121 (1919) · JFM 47.0385.01
[39] Radon J. (1919) Über die randwertaufgaben beim logarithmische potential. Sitz. Akad. Wiss. Wien, Band 12, Heft 7: 1123-1167 · JFM 47.0457.01
[40] Reid W.T. (1951) Symmetrizable completely continuous linear transformations in Hilbert space. Duke Math. J. 18, 41-56 · Zbl 0042.36002 · doi:10.1215/S0012-7094-51-01805-4
[41] Riesz F., Sz.-Nagy B., (1955) Functional Analysis. Frederik Ungar, New York · Zbl 0070.10902
[42] Shapiro H.S.: The Schwarz Function and its Generalization to Higher Dimensions. University of Arkansas Lecture Notes in the Mathematical Sciences9. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1992 · Zbl 0784.30036
[43] Schiffer M. (1957) The Fredholm eigenvalues of plane domains. Pacific J. Math. 7, 1187-1225 · Zbl 0138.30003 · doi:10.2140/pjm.1957.7.1187
[44] Schiffer M. (1981) Fredholm eigenvalues and Grunsky matrices. Ann. Polon. Math. 39, 149- 164 · doi:10.4064/ap-39-1-149-164
[45] Schwarz H.A.: Gesammelte Mathematische Abhandunglen 2 vols., Berlin 1890
[46] Sobolev S.L., (1964) Partial Differential Equations of Mathematical Physics. Pergamon Press, Oxford · Zbl 0123.06508
[47] Springer G (1964) Fredholm eigenvalues and quasi-conformal mapping. Acta Math. 111, 121-141 · Zbl 0147.07103 · doi:10.1007/BF02391011
[48] Zaanen A.C., (1953) Linear Analysis. Interscience, New York · Zbl 0053.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.