×

On the classical string solutions and string/field theory duality. II. (English) Zbl 1059.81141

Summary: Based on the recently considered classical string configurations, in the framework of the semiclassical limit of the string/gauge theory correspondence, we describe a procedure for obtaining exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend nonlinearly on the worldsheet spatial parameter. The tensionless limit, corresponding to small ’t Hooft coupling on the field theory side, is also considered. Applying the developed approach, we first reproduce some known results. Then, we find new string solutions – with two spins in AdS\(_5\) black hole background and in AdS\(_5\times S_5\) with two spins and up to nine independent conserved \(R\)-charges.
Part I, cf. J. High Energy Phys. 2003, No. 8, 018, 16 pp. (electronic) (2003).

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory

References:

[1] Gubser S. S., Nucl. Phys. 636 pp 99– · Zbl 0996.81076 · doi:10.1016/S0550-3213(02)00373-5
[2] Frolov S., J. High Energy Phys. 0206 pp 007–
[3] Russo J. G., J. High Energy Phys. 0206 pp 038–
[4] Armoni A., J. High Energy Phys. 0206 pp 058–
[5] Mandal G., Phys. Lett. 543 pp 81– · Zbl 0997.81092 · doi:10.1016/S0370-2693(02)02424-3
[6] Minahan J. A., Nucl. Phys. 648 pp 203– · Zbl 1005.81063 · doi:10.1016/S0550-3213(02)00966-5
[7] Tseytlin A. A., Int. J. Mod. Phys. 18 pp 981– · Zbl 1080.81585 · doi:10.1142/S0217751X03012382
[8] Armoni A., J. High Energy Phys. 0210 pp 069–
[9] Alishahiha M., J. High Energy Phys. 0210 pp 060–
[10] Hartnoll S. A., J. High Energy Phys. 0302 pp 049–
[11] Buchel A., Phys. Rev. 67 pp 066004–
[12] Loewi A., Phys. Lett. 557 pp 253– · Zbl 1009.81059 · doi:10.1016/S0370-2693(03)00196-5
[13] Pons J. M., Nucl. Phys. 665 pp 129– · Zbl 1059.81126 · doi:10.1016/S0550-3213(03)00485-1
[14] Ryang S., J. High Energy Phys. 0304 pp 045–
[15] Kruczenski M., J. High Energy Phys. 0307 pp 049–
[16] Dimov H., Phys. Rev. 68 pp 066010–
[17] Frolov S., Nucl. Phys. 668 pp 77– · Zbl 1031.81051 · doi:10.1016/S0550-3213(03)00580-7
[18] Matlock P., Phys. Rev. 68 pp 086001–
[19] Larsen A. L., Phys. Rev. 68 pp 066002–
[20] DOI: 10.1103/PhysRevLett.91.111602 · doi:10.1103/PhysRevLett.91.111602
[21] Frolov S., Phys. Lett. 570 pp 96– · Zbl 1058.81652 · doi:10.1016/j.physletb.2003.07.022
[22] Arutyunov G., Nucl. Phys. 671 pp 3– · Zbl 1037.83017 · doi:10.1016/j.nuclphysb.2003.08.036
[23] Besert N., J. High Energy Phys. 0310 pp 037–
[24] Schvellinger M., J. High Energy Phys. 0402 pp 066–
[25] Khan A., Phys. Rev. 69 pp 026001–
[26] Bozhilov P., Phys. Rev. 65 pp 026004–
[27] Sanchez N., Int. J. Mod. Phys. 18 pp 2011– · Zbl 1037.81574 · doi:10.1142/S0217751X0301543X
[28] Aleksandrova D., J. High Energy Phys. 0308 pp 018–
[29] Isberg J., Nucl. Phys. 411 pp 122– · Zbl 1049.81596 · doi:10.1016/0550-3213(94)90056-6
[30] DOI: 10.1088/0264-9381/11/5/002 · Zbl 0796.53091 · doi:10.1088/0264-9381/11/5/002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.