×

Semiclassical quantization of superstrings: \(\text{AdS}_5\times S^5\) and beyond. (English) Zbl 1080.81585

Summary: We discuss semiclassical quantization of closed superstrings in \(\text{AdS}_5\times S^5\). We consider two basic examples: point-like string boosted along a large circle of \(S^5\) and folded string rotating in \(\text{AdS}_5\). In the first case we clarify the general structure of the sigma model perturbation theory for the energy of string states beyond the one-loop order (related to the plane-wave limit). In the second case we argue that the large spin limit of the expression for the ground-state energy (i.e. for the dimension of the corresponding minimal twist gauge theory operator) has the form \(S + f(\lambda) \ln S\) to all orders in the \(\alpha^{'} \sim 1/\sqrt{\lambda}\) expansion, in agreement with the AdS/CFT duality. We also suggest the extension of the semiclassical approach to near-conformal (near-AdS) cases on the example of the fractional D3-brane on conifold background.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81T60 Supersymmetric field theories in quantum mechanics
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
83E30 String and superstring theories in gravitational theory

References:

[1] Berenstein D., J. High Energy Phys. 0204 pp 013–
[2] DOI: 10.1016/S0550-3213(02)00373-5 · Zbl 0996.81076 · doi:10.1016/S0550-3213(02)00373-5
[3] DOI: 10.1016/S0550-3213(98)00570-7 · Zbl 0956.81063 · doi:10.1016/S0550-3213(98)00570-7
[4] Kallosh R., J. High Energy Phys. 9810 pp 016–
[5] Forste S., J. High Energy Phys. 9908 pp 013–
[6] Frolov S., J. High Energy Phys. 0206 pp 007–
[7] DOI: 10.1016/S0550-3213(02)00003-2 · Zbl 0985.81095 · doi:10.1016/S0550-3213(02)00003-2
[8] Blau M., J. High Energy Phys. 0201 pp 047–
[9] DOI: 10.1103/PhysRevD.65.126004 · doi:10.1103/PhysRevD.65.126004
[10] DOI: 10.1103/PhysRevD.54.7513 · doi:10.1103/PhysRevD.54.7513
[11] DOI: 10.1103/PhysRevD.51.6917 · doi:10.1103/PhysRevD.51.6917
[12] Russo J. G., J. High Energy Phys. 0206 pp 038–
[13] DOI: 10.1016/S0370-2693(99)01063-1 · Zbl 0987.81565 · doi:10.1016/S0370-2693(99)01063-1
[14] DOI: 10.1016/0550-3213(94)90276-3 · Zbl 1049.81612 · doi:10.1016/0550-3213(94)90276-3
[15] DOI: 10.1103/PhysRevD.11.3424 · doi:10.1103/PhysRevD.11.3424
[16] Klebanov I. R., J. High Energy Phys. 0008 pp 052–
[17] DOI: 10.1016/S0550-3213(00)00206-6 · Zbl 0976.81109 · doi:10.1016/S0550-3213(00)00206-6
[18] Itzhaki N., J. High Energy Phys. 0203 pp 048–
[19] Zayas L. A. Pando, J. High Energy Phys. 0205 pp 010–
[20] DOI: 10.1016/S0550-3213(01)00554-5 · Zbl 0982.81042 · doi:10.1016/S0550-3213(01)00554-5
[21] DOI: 10.1016/S0550-3213(98)00654-3 · Zbl 0948.81619 · doi:10.1016/S0550-3213(98)00654-3
[22] DOI: 10.1016/0550-3213(95)00261-P · Zbl 1009.81570 · doi:10.1016/0550-3213(95)00261-P
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.