×

A semi-classical limit of the gauge/string correspondence. (English) Zbl 0996.81076

Summary: A world-sheet sigma model approach is applied to string theories dual to four-dimensional gauge theories, and semi-classical soliton solutions representing highly excited string states are identified which correspond to gauge theory operators with relatively small anomalous dimensions. The simplest class of such states are strings on the leading Regge trajectory, with large spin in AdS\(_5\). These correspond to operators with many covariant derivatives, whose anomalous dimension grows logarithmically with the space-time spin. In the gauge theory, the logarithmic scaling violations are similar to those found in perturbation theory. Other examples of highly excited string states are also considered.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Polyakov, A. M., The wall of the cave · Zbl 0931.81013
[2] Maldacena, J., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231-252 (1998) · Zbl 0914.53047
[3] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105-114 (1998) · Zbl 1355.81126
[4] Witten, E., Anti-de-Sitter space and holography, Adv. Theor. Math. Phys., 2, 253-291 (1998) · Zbl 0914.53048
[5] Gubser, S. S.; Klebanov, I. R., Absorption by branes and Schwinger terms in the world-volume theory, Phys. Lett. B, 413, 41 (1997)
[6] Berkovits, N., Super-Poincaré covariant quantization of the superstring, JHEP, 0004, 018 (2000) · Zbl 0959.81065
[7] Polyakov, A. M., Gauge fields and space-time · Zbl 1025.83032
[8] Berenstein, D.; Maldacena, J.; Nastase, H., Strings in flat space and pp waves from \(N=4\) super-Yang-Mills
[9] Metsaev, R. R., Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background, Nucl. Phys. B, 625, 70 (2002) · Zbl 0985.81095
[10] Blau, M.; Figueroa-O’Farrill, J.; Hull, C.; Papadopoulos, G., A new maximally supersymmetric background of IIB superstring theory, JHEP, 0201, 047 (2002)
[11] Rey, S. J.; Yee, J., Macroscopic strings as heavy quarks in large-\(N\) gauge theory and anti-de-Sitter supergravity, Eur. Phys. J. C, 22, 379 (2001) · Zbl 1072.81555
[12] Georgi, H.; Politzer, D., Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev. D, 9, 416-420 (1974)
[13] Aharony, O.; Gubser, S. S.; Maldacena, J.; Ooguri, H.; Oz, Y., Large-\(N\) field theories, string theory and gravity, Phys. Rep., 323, 183-386 (2000) · Zbl 1368.81009
[14] de Vega, H. J.; Egusquiza, I. L., Planetoid string solutions in 3+1 axisymmetric space-times, Phys. Rev. D, 54, 7513 (1996)
[15] Dolan, F. A.; Osborn, H., Superconformal symmetry, correlation functions and the operator product expansion · Zbl 1039.81551
[16] Korchemsky, G. P.; Marchesini, G., Structure function for large \(x\) and renormalization of Wilson loop, Nucl. Phys. B, 406, 225-258 (1993)
[17] Drukker, N.; Gross, D. J., An exact prediction of \(N=4\) SUSYM theory for string theory, J. Math. Phys., 42, 2896-2914 (2001) · Zbl 1036.81041
[18] Erickson, J. K.; Semenoff, G. W.; Zarembo, K., Wilson loops in \(N=4\) supersymmetric Yang-Mills theory, Nucl. Phys. B, 582, 155-175 (2000) · Zbl 0984.81154
[19] Floratos, E. G.; Ross, D. A.; Sachrajda, C. T., Nucl. Phys. B, 152, 493 (1979)
[20] Gonzalez-Arroyo, A.; Lopez, C., Nucl. Phys. B, 166, 429 (1980)
[21] D. Gross, Lectures at Les Houches, 1975; D. Gross, Lectures at Les Houches, 1975
[22] Vasiliev, M. A., Higher-spin gauge theories: star-product and AdS space · Zbl 0990.81084
[23] Sundborg, B., Stringy gravity, interacting tensionless strings and massless higher spins · Zbl 1006.81066
[24] Witten, E., Talk at the John Schwarz 60th Birthday Symposium
[25] Sezgin, E.; Sundell, P., Doubletons and 5D higher-spin gauge theory · Zbl 0995.81059
[26] Mikhailov, A., Notes on higher-spin symmetries
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.