×

Shot noise Cox processes. (English) Zbl 1045.60007

Briefly, a Cox process is a natural extension of a Poisson process, considering the intensity measure of the Poisson process as a realization of a random measure. When a Cox process \(X\) is defined in the \(d\)-dimensional Euclidean space \(R^d\), it is usually specified by a random field \(Z(\xi)\geq 0\), \(\xi\in R^d\), so that the conditional distribution of \(X\) given \(Z\) is a Poisson point process on \(R^d\) with intensity function \(Z\). Many recent papers deal with simulation-based inference for new flexible model classes of such Cox processes [see the author and R. P. Waagepetersen, “Statistical inference and simulation for spatial point processes” (2004; Zbl 1044.62101)]).
This paper is concerned with shot noise Cox processes (SNCPs), i.e. when \(Z\) is of the form \(Z(\xi) = \sum_j \gamma_j k(c_j, \xi)\), where \(k(c_j,\cdot)\) is a kernel (i.e. a density function for a continuous \(d\)-dimensional random variable) and the \((c_j, \gamma_j)\in R^d\times (0, \infty)\) are the points of a Poisson point process \(\Phi\) on \(R^d\times (0, \infty)\). This is a rich class of Cox process models which includes Neyman-Scott processes and Poisson-gamma processes as special cases. The focus in the paper is on the probabilistic aspects of SNCPs with a view to statistical applications.
The paper is organized as follows. Section 2 provides some background material. Section 3 concerns results for the summary statistics and the reduced Palm distributions of SNCPs. Section 4 studies different simulation algorithms for simulation of an SNCP within a bounded window \(W\), and for conditional simulation of \(\Phi\) given the restriction of an SNCP within \(W\). Finally, Section 5 deals with local and spatial Markov properties of SNCPs when the kernel has a bounded support.

MSC:

60D05 Geometric probability and stochastic geometry
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
68U20 Simulation (MSC2010)

Citations:

Zbl 1044.62101

Software:

spatial
Full Text: DOI

References:

[1] Ambartzumian, R. V. (1966). On an equation for stationary point processes. Akad. Nauk. Armjanskoi SSR Dokl. 42, 141–147 (in Russian).
[2] Baddeley, A. and Møller, J. (1989). Nearest-neighbour Markov point processes and random sets. Internat. Statist. Rev. 2, 89–121. · Zbl 0721.60010 · doi:10.2307/1403381
[3] Baddeley, A. J. and van Lieshout, M. N. M. (1993). Stochastic geometry models in high-level vision. In Statistics and Images. 1. (suppl . J. Appl. Statist. 20 ), eds K. V. Mardia and G. K. Kanji, Carfax Publishing, Abingdon, pp. 235–256.
[4] Baddeley, A., Møller, J. and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350. · Zbl 1018.62027 · doi:10.1111/1467-9574.00144
[5] Baddeley, A. J., van Lieshout, M. N. M. and Møller, J. (1996). Markov properties of cluster processes. Adv. Appl. Prob. 28, 346–355. · Zbl 0864.60011 · doi:10.2307/1428060
[6] Benes, V., Bodlak, K., Møller, J. and Waagepetersen, R. P. (2002). Bayesian analysis of log Gaussian Cox process models for disease mapping. Tech. Rep. R-02–2001, Department of Mathematical Sciences, Aalborg University.
[7] Best, N. G., Ickstadt, K. and Wolpert, R. (2000). Spatial Poisson regression for health and exposure data measured at disparate resolutions. J. Amer. Statist. Assoc. 95, 1076–1088. · Zbl 1004.62090 · doi:10.2307/2669744
[8] Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. Appl. Prob. 31, 929–953. · Zbl 0957.60055 · doi:10.1239/aap/1029955251
[9] Brix, A. and Chadœ uf, J. (2000). Spatio-temporal modeling of weeds and shot-noise G Cox processes. Submitted. · Zbl 1052.62111
[10] Brix, A. and Diggle, P. J. (2001). Spatio-temporal prediction for log-Gaussian Cox processes. J. R. Statist. Soc. B 63, 823–841. · Zbl 0996.62076 · doi:10.1111/1467-9868.00315
[11] Brix, A. and Kendall, W. S. (2002). Simulation of cluster point processes without edge effects. Adv. Appl. Prob. 34, 267–280. · Zbl 1007.60041 · doi:10.1239/aap/1025131217
[12] Brix, A. and Møller, J. (2001). Space–time multitype log Gaussian Cox processes with a view to modelling weed data. Scand. J. Statist. 28, 471–488. · Zbl 0981.62079 · doi:10.1111/1467-9469.00249
[13] Chin, Y. C. and Baddeley, A. (2000). Markov interacting component processes. Adv. Appl. Prob. 32, 597–619. · Zbl 0971.60051
[14] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes . Springer, New York. · Zbl 0657.60069
[15] Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns . Academic Press, London. · Zbl 0559.62088
[16] Georgii, H.-O. (1976). Canonical and grand canonical Gibbs states for continuum systems. Commun. Math. Phys. 48, 31–51.
[17] Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Stochastic Geometry: Likelihood and Computation (Monogr. Statist. Appl. Prob. 80 ), eds O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, Chapman and Hall/CRC, London, pp. 79–140. · Zbl 0809.62089
[18] Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21, 359–373. · Zbl 0809.62089
[19] Heikkinen, J. and Arjas, E. (1998). Non-parametric Bayesian estimation of a spatial Poisson intensity. Scand. J. Statist. 25, 435–450. · Zbl 0921.62034 · doi:10.1111/1467-9469.00114
[20] Kallenberg, O. (1984). An informal guide to the theory of conditioning in point processes. Internat. Statist. Rev. 52, 151–164. · Zbl 0552.60041 · doi:10.2307/1403098
[21] Kendall, W. S. (1990). A spatial Markov property for nearest-neighbour Markov point processes. J. Appl. Prob. 28, 767–778. · Zbl 0725.60042 · doi:10.2307/3214821
[22] Kerstan, J. and Matthes, K. (1964). Verallgemeinerung eines Satzes von Sliwnjak. Rev. Roumaine Math. Pures Appl. IX, 811–829. · Zbl 0192.24801
[23] Lawson, A. B. (1993). Discussion contribution. J. R. Statist. Soc. B 55, 61–62. JSTOR:
[24] Matérn, B. (1960). Spatial Variation (Meddelanden Statens Skogforskningsinst. 49 ). Statens Skogsforskningsinstitut, Stockholm. Second edition: Lecture Notes Statist. 36 , Springer, Berlin, 1986.
[25] Mecke, J. (1967). Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 36–58. · Zbl 0164.46601 · doi:10.1007/BF00535466
[26] Meester, R. and Roy, R. (1996). Continuum Percolation . Cambridge University Press, New York. · Zbl 0858.60092
[27] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, London. · Zbl 0925.60001
[28] Møller, J. (1994). Discussion: N. L. Hjort and H. Omre ‘Topics in spatial statistics’. Scand. J. Statist. 21, 346–349.
[29] Møller, J. (1999). Markov chain Monte Carlo and spatial point processes. In Stochastic Geometry: Likelihood and Computation (Monogr. Statist. Appl. Prob. 80 ), eds O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, Chapman and Hall/CRC, London, pp. 141–172.
[30] Møller, J. (2003). A comparison of spatial point process models in epidemiological applications. In Highly Structured Stochastic Systems , eds P. J. Green, N. L. Hjort and S. Richardson, Oxford University Press, pp. 264–268.
[31] Møller, J. and Waagepetersen, R. P. (1998). Markov connected component fields. Adv. Appl. Prob. 30, 1–35. · Zbl 0908.60035 · doi:10.1239/aap/1035227989
[32] Møller, J. and Waagepetersen, R. P. (2002). Statistical inference for Cox processes. In Spatial Cluster Modelling , eds A. B. Lawson and D. Denison, Chapman and Hall/CRC, Boca Raton, FL, pp. 37–60.
[33] Møller, J. and Waagepetersen, R. P. (2003). Statistical Inference and Simulation for Spatial Point Processes (Monog. Statist. Appl. Prob. 100 ). Chapman and Hall/CRC, Boca Raton, FL.
[34] Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scand. J. Statist. 25, 451–482. · Zbl 0931.60038 · doi:10.1111/1467-9469.00115
[35] Neyman, J. and Scott, E. L. (1958). Statistical approach to problems of cosmology. J. R. Statist. Soc. B 20, 1–43. · Zbl 0085.42906
[36] Nguyen, X. X. and Zessin, H. (1979). Integral and differential characterizations of Gibbs processes. Math. Nachr. 88, 105–115. · Zbl 0444.60040 · doi:10.1002/mana.19790880109
[37] Ripley, B. D. (1976). The second-order analysis of stationary point processes. J. Appl. Prob. 13, 255–266. · Zbl 0364.60087 · doi:10.2307/3212829
[38] Ripley, B. D. (1977). Modelling spatial patterns (with discussion). J. R. Statist. Soc. B 39, 172–212. · Zbl 0369.60061
[39] Ripley, B. D. (1987). Stochastic Simulation . John Wiley, New York. · Zbl 0613.65006
[40] Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. London Math. Soc. 15, 188–192. · Zbl 0354.60037 · doi:10.1112/jlms/s2-15.1.188
[41] Ruelle, D. (1969). Statistical Mechanics: Rigorous Results . W. A. Benjamin, Reading, MA. · Zbl 0177.57301
[42] Santaló, L. (1976). Integral Geometry and Geometric Probability . Addison-Wesley, Reading, MA. · Zbl 0342.53049
[43] Stoyan, D. and Stoyan, H. (1994). Fractals, Random Shapes and Point Fields . John Wiley, Chichester. · Zbl 0828.62085
[44] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications , 2nd edn. John Wiley, Chichester. · Zbl 0838.60002
[45] Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology. Biometrika 36, 18–25.
[46] Van Lieshout, M. N. M. and Baddeley, A. J. (1995). Markov chain Monte Carlo methods for clustering of image features. In Proc. 5th IEE Internat. Conf. Image Processing and its Applications (IEE Conf. Publication 410 ), IEE Press, London, pp. 241–245.
[47] Van Lieshout, M. N. M. and Baddeley, A. J. (1996). A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica 50, 344–361. · Zbl 0898.62118 · doi:10.1111/j.1467-9574.1996.tb01501.x
[48] Van Lieshout, M. N. M. and Baddeley, A. J. (2002). Extrapolating and interpolating spatial patterns. In Spatial Cluster Modelling , eds. A. B. Lawson and D. Denison, Chapman and Hall, Boca Raton, FL, pp. 61–86.
[49] Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika 85, 251–267. · Zbl 0951.62082 · doi:10.1093/biomet/85.2.251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.