×

Disconnectedness of sublevel sets of some Riemannian functionals. (English) Zbl 0872.53030

Consider the space \(\text{Riem}(M)\) of Riemannian structures on \(M\) and the function \(f\): \(\text{Riem}(M)\to\mathbb{R}\) given by the injectivity radius. The author shows that the superlevel sets \(f\geq \varepsilon\) are disconnected for \(\varepsilon\) small enough, when \(n=\dim M\geq 5\). Informally speaking, manifolds of dimension \(\geq 5\) admit pairs of Riemannian structures of unit volume and small injectivity radius such that any path joining them in the space of Riemannian structures must “uncontrollably” diminish the injectivity radius of some intermediate structure. The term “uncontrollably” is made precise in terms of Turing computable functions. The proof uses an invariant \(F_M(\varepsilon)\) defined in terms of the filling length of curves, a Riemannian invariant introduced by M. Gromov. The idea is to apply S. Novikov’s theorem on the nonexistence of an algorithm deciding whether or not a given \(n\)-dimensional manifold is homeomorphic to \(S^n\) \((n\geq 5)\). Computing an upper bound for \(F_M(\varepsilon)\) as \(\varepsilon\to 0\) would make possible an explicit construction of an algorithm recognizing whether or not a given homology sphere is simply connected.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
03D35 Undecidability and degrees of sets of sentences

References:

[1] F. Acquistapace, R. Benedetti, F. Broglia, Effectiveness-non-effectiveness in semi-algebraic and PL geometry, Inv. Math. 102:1 (1990), 141–156. · Zbl 0729.14040 · doi:10.1007/BF01233424
[2] M. Anderson, J. Cheeger,C {\(\alpha\)} -compactness for manifolds with Ricci curvature and injectivity radius bounded from below, J. Diff. Geom. 35 (1992), 265–281. · Zbl 0774.53021
[3] J. Bochnak, M. Coste, M.-F. Roy, Geometrie Algebrique Reelle, Springer, 1987.
[4] G. Boolos, R. Jeffrey, Computability and Logic”, Third Edition, Cambridge University Press, 1989.
[5] W. Boone, W. Haken, V. Poenaru, On recursively unsolvable problems in topology and their classification, in ”Contributions to Mathematical Logic” (H. Arnold Schmidt, K. Schutte, H.-J. Thiele, eds.), North-Holland, 1968. · Zbl 0246.57015
[6] Yu. Burago, M. Gromov, G. Perelman, A.D. Alexandrov spaces with curvature bounded below, Russ. Math. Surv. 47 (1992), 1–58. · Zbl 0796.18009 · doi:10.1070/RM1992v047n02ABEH000877
[7] J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74. · Zbl 0194.52902 · doi:10.2307/2373498
[8] J. Cheeger, M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded I, II”, J. Diff. Geom. 23 (1986), 309–346 and J. Diff. Geom. 32 (1990), 269–298. · Zbl 0606.53028
[9] M. Coste, Ensembles semi-algebriques, in ”Geometrie algebrique reelle et formes quadratiques”, Journees S.M.F. Universite de Rennes, (J.-L. Colliot-Thelene, M. Coste, L. Mahe, M.-F. Roy, eds.) Springer Lecture Notes in Math. 959 (1982), 109–138. · doi:10.1007/BFb0062252
[10] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Scient. Ec. Norm. Sup. 13 (1980), 419–435. · Zbl 0465.53032
[11] H.B. Enderton, Elements of recursion theory, in ”Handbook of Mathematical Logic”, (J. Barwise, ed.), North-Holland, 1977, 527–566.
[12] K. Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, in ”Recent topics in Differential and Analytic Geometry” (T. Ochiai, ed.) Kinokuniya, 1990.
[13] R. Greene, Some concepts and methods in Riemannian geometry, in ”Differential Geometry: Riemannian Geometry” (R. Greene, S.T. Yau, eds.), Proceedings of AMS Symposia in Pure Math. 54:3 (1993), 1–22. · Zbl 0806.53035
[14] M. Gromov, Volume and bounded cohomology, Publication IHES 56 (1982), 5–99. · Zbl 0516.53046
[15] M. Gromov, Asymptotic invariants of infinite groups, in ”Geometric Group Theory” vol. 2 (G. Niblo, M. Roller, eds.) Cambridge University Press, 1993. · Zbl 0841.20039
[16] M. Gromov, J. Lafontaine, P. Pansu, Structures metriques pour les varietes Riemannienes, CEDIC/Fernand Nathan, Paris, 1981.
[17] M. Gromov, H.B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. IHES 58 (1983), 295–408. · Zbl 0538.53047
[18] K. Grove, Metric differential geometry, in ”Differential Geometry”, (V. Hansen, ed.), Springer Lecture Notes in Math. 1263 (1987), 171–227. · Zbl 0622.53022 · doi:10.1007/BFb0078613
[19] K. Grove, P. Petersen V, Bounding homotopy type by geometry, Ann. Math. 128 (1988), 195–206. · Zbl 0655.53032 · doi:10.2307/1971439
[20] K. Grove, P. Petersen V, J. Wu, Geometric finiteness theorems via controlled topology, Inv. Math. 99 (1990), 205–213. · Zbl 0747.53033 · doi:10.1007/BF01234417
[21] M. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67–72. · Zbl 0187.20401 · doi:10.1090/S0002-9947-1969-0253347-3
[22] M. Kreck, S. Stolz, Non-connected moduli spaces of positive sectional curvature metrics, J. of the Amer. Math. Soc. 6:4 (1993), 825–850. · Zbl 0793.53041 · doi:10.1090/S0894-0347-1993-1205446-4
[23] C.F. Miller, Decision problems for groups – survey and reflections, in ”Combinatorial Group Theory” (G. Baumslag, C.F. Miller, eds.), Springer, 1989, 1–59.
[24] J. Milnor, Lectures on the h-cobordism Theorem, Princeton Univ. Press, 1965. · Zbl 0161.20302
[25] A. Nabutovsky, Non-recursive functions in real algebraic geometry, Bull. Amer. Math. Soc. 20 (1989), 61–65. · Zbl 0692.14013 · doi:10.1090/S0273-0979-1989-15698-X
[26] A. Nabutovsky, Einstein structures: existence versus uniqueness, Geometric And Functional Analysis 5 (1995), 76–91. · Zbl 0842.53032 · doi:10.1007/BF01928216
[27] A. Nabutovsky, Non-recursive functions, knots ’with thick ropes’ and self-clenching ’thick’ hypersurfaces, Comm. on Pure and Appl. Math. 48 (1995), 381–428. · Zbl 0845.57023 · doi:10.1002/cpa.3160480402
[28] A. Nabutovsky, Geometry of the space of triangulations of a compact manifold, Comm. Math. Phys., to appear. · Zbl 0863.57015
[29] I. Nikolaev, Bounded curvature closure of the set of compact Riemannian manifolds, Bull. AMS 24 (1992), 171–177. · Zbl 0726.53042 · doi:10.1090/S0273-0979-1991-15980-X
[30] P. Pansu, Effondrement des varietes riemanniennes (d’apres J. Cheeger et M. Gromov), Sem. Bourbaki 1983/1984, Asterisque 121–122 (1985), 63–82.
[31] S. Peters, Convergence of Riemannian manifolds, Comp. Math. 62 (1987), 3–16. · Zbl 0618.53036
[32] P. Petersen V, Gromov-Hausdorff convergence of metric spaces, in ”Differential Geometry: Riemannian Geometry” (R. Greene, S.T. Yau, ed.), Proceedings of AMS Symposia in Pure Math. 54:3 (1993), 489–504.
[33] C. Plaut, Metric curvature, convergence and topological finiteness, Duke Math. J. 66:1 (1992), 43–57. · Zbl 0770.53033 · doi:10.1215/S0012-7094-92-06602-6
[34] J.J. Rotman, An Introduction to the Theory of Groups, Allyn and Bacon, Boston, 1984. · Zbl 0576.20001
[35] A. Thompson, Thin position and the recognition problem forS 3, Math. Res. Lett. 1 (1994), 613–630. · Zbl 0849.57009
[36] I. Volodin, V. Kuznetzov, A. Fomenko, The problem of discriminating algorithmically the standard three-dimensional sphere, Russ. Math. Surveys 29:5 (1974), 71–172. · Zbl 0311.57001 · doi:10.1070/RM1974v029n05ABEH001296
[37] H. Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957. · Zbl 0083.28204
[38] T. Yamaguchi, Homotopy type finiteness theorems for certain precompact families of Riemannian manifolds, Proc. Amer. Math. Soc. 102 (1988), 660–666. · Zbl 0647.53035 · doi:10.1090/S0002-9939-1988-0928999-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.