×

Effectiveness - non effectiveness in semialgebraic and PL geometry. (English) Zbl 0729.14040

The authors study the problem of effectiveness of the semi-algebraic “Hauptvermutung” of Shiota-Yokoi. Namely, let K, L be two finite simplicial complexes in \({\mathbb{R}}^ n\) with at most k simplices. Let f: \(| K| \to | L|\) be a semi-algebraic homeomorphism whose graph is defined (as a semi-algebraic set) with polynomials of degree \(\leq q\). Then there is an algorithm which constructs subdivisions \(K'\) and \(L'\) of K and L, and a simplicial isomorphism from \(K'\) to \(L'.\)
The problem adressed by the authors is the possibility of the existence of an effective bound on the number of simplices of \(K'\) and \(L'\) in terms of (n,p,q,k). - The answer is yes if \(m=\dim | K| =\dim | L| \leq 3\), and no if \(m\geq 6\), even in the case where K is a PL-ball, and L the standard simplex \(\Delta_ m.\)
The proof uses a result of Novikov, which is a topological counter-part of the “nondecidability of the triviality for finitely presented groups”. The use of such results in semi-algebraic geometry is due to Nabutovsky.

MSC:

14P10 Semialgebraic sets and related spaces
14Q20 Effectivity, complexity and computational aspects of algebraic geometry
57Q25 Comparison of PL-structures: classification, Hauptvermutung
03D25 Recursively (computably) enumerable sets and degrees

References:

[1] Acquistapace, F.: Una dimostrazione elementare di una propriet? dei politopi convessi. Bollettino U.M.I. (6)4-A, 467-470 (1985)
[2] Alexander, J.W.: On the subdivision of 3-space by a polyhedron. Proc. Natl. Acad. Sci. USA10, 6-8 (1924) · JFM 50.0659.01 · doi:10.1073/pnas.10.1.6
[3] Benedetti, R., Risler, J.J.: Real algebraic and semialgebraic sets. Paris: Hermann 1990 · Zbl 0694.14006
[4] Bochnak, J, Coste, M., Roy, M.F.: G?ometrie alg?brique r?elle. Ergebnisse der Mathematik 3 Folge. Bd. 12. Berlin, Heidelberg, New York: Springer 1987
[5] Bruggesser, H., Mani, P.: Shellable decomposition of cells and spheres. Math. Scand.29, 197-205 (1971) · Zbl 0251.52013
[6] Hardt, R.: Semialgebraic local triviality in semialgebraic mappings. Am. J. Math.102, 291-302 (1980) · Zbl 0465.14012 · doi:10.2307/2374240
[7] Hudson, J.F.P.: Lectures on P.L. topology. New York: Benjamin 1969
[8] Moise, E.E.: Geometric topology in dimension 2 and 3. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0349.57001
[9] Munkres, J.R.: Elementary differential topology. Am. Math. Stud. Princeton n.ro 54 (1961) · Zbl 0107.17201
[10] Nabutovsky, A.: Non-recursive functions in real algebraic geometry. In: Real Analytic and Algebraic Geometry (Lect. Notes Math., vol. 1420) Berlin Heidelberg New York: Springer 1990 · Zbl 0715.14045
[11] Rourke, C.P., Sanderson, B.J.: Introduction of P.L. topology. Ergebnisse der Mathematik Bd 69. Berlin Heidelberg New York: Springer 1982
[12] Rudin, M.E.: An unshellable triangulation of a tetrahedron. Bull. A.M.S.64, 90-91 (1958) · Zbl 0082.37602 · doi:10.1090/S0002-9904-1958-10168-8
[13] Sanderson, D.E.: Isotopy in 3-manifold I. Proc. Am. Math. Soc.8, 912-922 (1957) · Zbl 0080.38304
[14] Shiota, M., Yokoi, M.: Triangulations of subanalytic sets and locally subanalytic manifolds. Trans. Am. Math. Soc.286 (n. 2), 727-750 (1984) · Zbl 0527.57014 · doi:10.1090/S0002-9947-1984-0760983-2
[15] Volodin, I.A., Kuznetov, V.E., Fomenko, A.T.: The problem of discriminating algorithmically the standard 3-dimensional sphere. Russ. Math. Surv.29, 71-172 (1974) · Zbl 0311.57001 · doi:10.1070/RM1974v029n05ABEH001296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.