×

Einstein structures: Existence versus uniqueness. (English) Zbl 0842.53032

The paper is based on the following Novikov theorem: Let \(p: \mathbb{R}^n\to \mathbb{R}\) be a polynomial function with rational coefficients such that the zero set \(Z(p)\) of \(p\) is non-empty, compact and non-singular. For \(n\geq 5\) there is no algorithm deciding whether or not \(Z(p)\) is diffeomorphic to the sphere \(S^n\) (the degree and the vector of coefficients of \(p\) are regarded as the input data for the algorithm). A proof of this theorem is sketched in [I. A. Volodin, V. E. Kuznetsov and A. T. Fomenko, Russ. Math. Surv. 29, 71-172 (1974); translation from Usp. Mat. Nauk 29, No. 5(179), 71-168 (1974; Zbl 0303.57002)]. A complete proof of this theorem is given in the appendix of the present article.
The author uses Novikov’s theorem to prove some results concerning the existence of Einstein metrics. The author introduces the following definition: a compact manifold \(M\) almost admits an Einstein metric of negative scalar curvature if there exists an infinite sequence of metrics \(\{\mu_i\}\) on \(M\) such that the \(C^0\)-norm of the tensor \(\text{Ric}(\mu_i)+ \mu_i\) tends to zero (note that if \(g'\) is an Einstein metric of negative scalar curvature, then multiplying this metric by a positive constant one gets an Einstein metric \(g\) of scalar curvature \(- n\), so that \(\text{Ric}(g)+ g= 0\)). With this definition the author states the following result: If for \(n\geq 5\) every \(n\)-dimensional smooth homology sphere with “large” fundamental group almost admits an Einstein metric of negative scalar curvature, then \(S^n\) almost admits an Einstein metric of negative scalar curvature (the existence of Einstein metrics of negative scalar curvature on \(S^n\) for \(n\geq 5\) is an open problem). He also obtains some other similar results.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
03F50 Metamathematics of constructive systems

References:

[1] [A]M.T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), 455–490. · Zbl 0694.53045 · doi:10.1090/S0894-0347-1989-0999661-1
[2] [BT]E. Ballico, A. Tognoli, Algebraic models defined over \(\mathbb{Q}\) of differentiable manifolds, Geom. Dedicata, 42 (1992), 155–162. · Zbl 0762.14029 · doi:10.1007/BF00147546
[3] [Be]A. Besse, Einstein Manifolds, Springer, 1987. · Zbl 0613.53001
[4] [BoCoR]J. Bochnak, M. Coste, M.-F. Roy, Geometrie Algebrique Reelle, Springer, 1987.
[5] [BooHPo]W. Boone, W. Haken, V. Poenaru On recursively unsolvable problems in topology and their classification, in ”Contributions to Mathematical Logic” (H. Arnold Schmidt, K. Scutte, H.-J. Theile, eds.) North-Holland, 1968.
[6] [C]J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74. · Zbl 0194.52902 · doi:10.2307/2373498
[7] [Co]M. Coste, Ensembles semi-algebriques, in ”Geometrie Algebrique Reele et Formes Quadratiques”, Journees S.M.F. Universite de Rennes (J.-L. Colliot-Thelene, M. Coste, L. Mahe, M.-F. Roy, eds.) Springer, LN in Math. 959 (1982), 109–138.
[8] [G1]M. Gromov Hyperbolic manifolds, groups and actions, in: ”Riemannian Surfaces and Related Topics” (I. Kra, B. Maskit, eds.) Princeton Univ. Press, Ann. of Math. Studies 97 (1981), 183–215.
[9] [G2]M. Gromov, Asymptotic invariants of infinite groups, preprint IHES/M/92/8.
[10] [K]M. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67–72. · Zbl 0187.20401 · doi:10.1090/S0002-9947-1969-0253347-3
[11] [KMi]M. Kervaire, J. Milnor, Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504–537. · Zbl 0115.40505 · doi:10.2307/1970128
[12] [L]J. Lochkamp, Negatively curved Ricci manifolds, Bull. Amer. Math. Soc. 27 (1992), 288–291. · Zbl 0753.53026 · doi:10.1090/S0273-0979-1992-00325-7
[13] [M]C.F. Miller, Decision problems for groups – survey and reflections, in ”Combinatorial Group Theory” (G. Baumslag, C. F. Miller, eds.), Springer, 1989.
[14] [Mi1]J. Milnor, Lectures on theh-cobordism Theorem, Princeton Univ. Press, 1965.
[15] [Mi2]J. Milnor, Introduction to AlgebraicK-theory, Princeton Univ. Press, Ann. of Math. Studies 72 (1971).
[16] [N1]A. Nabutovsky, Isotopies and non-recursive functions in real algebraic geometry, in ”Real Algebraic Geometry” (M. Galbiati, A. Tognoli, eds.), Springer, LN in Math., 1420 (1990), 194–205.
[17] [N2]A. Nabutovsky, Geometry of spaces of objects with complexity: algebraic hypersurfaces, knots ”with thick ropes” and semi-linear elliptic boundary value problems, Ph.D. Thesis, the Weizmann Institute of Science, 1992.
[18] [N3]A. Nabutovsky Non-recursive functions, knots ”with thick ropes”, and self-clenching ”thick” hypersurfaces”, to appear in Comm. on Pure and Appl. Math.
[19] [P]S. Peters, Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. fur die reigne und angew. Math. 349 (1984), 77–82. · Zbl 0524.53025 · doi:10.1515/crll.1984.349.77
[20] [Pe]P. Petersen V, Gromov-Hausdorff convergence of metric spaces. Proc. of Symp. in Pure Math. 54:3 (1993), 489–504.
[21] [S]R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Springer, LN in Math., 1365 (1989), 120–154. · Zbl 0702.49038
[22] [VKuF]I.A. Volodin, V.E. Kuznetzov, A.T. Fomenko, The problem of discriminating algorithmically the standard three-dimensional sphere. Russian Math. Surveys 29:5 (1974), 71–172. · Zbl 0311.57001 · doi:10.1070/RM1974v029n05ABEH001296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.