×

An integral equation method for elastostatics of periodic composites. (English) Zbl 0870.73042

Summary: An interface integral equation is presented for the elastostatic problem in a two-dimensional isotropic composite. The displacement is represented by a single layer force density on the component interfaces. In a simple numerical example involving hexagonal arrays of disks, the force density is expanded in a Fourier series. This leads to an algorithm with superalgebraic convergence. The integral equation is solved with double precision accuracy and with a modest computational effort. Effective moduli are extracted both for dilute arrays where previously three digit accurate results were available, and for dense arrays where previously no results were available.

MSC:

74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Adams, D. F.; Doner, D. R., Longitudinal shear loading of a unidirectional composite, J. Composite Mater., 1, 4-17 (1967)
[2] Adams, D. F.; Doner, D. R., Transverse normal loading of a unidirectional composite, J. Composite Mater., 1, 152-164 (1967)
[3] Atkinson, K. E., The Numerical Solution of Fredholm Integral Equations of the Second Kind, ((1994), Department of Mathematics, University of Iowa: Department of Mathematics, University of Iowa Iowa City), 298-317 · Zbl 0155.47404
[4] Becker, A. A., The Boundary Element Method in Engineering (1992), McGraw-Hill: McGraw-Hill New York
[5] Berman, C. L.; Greengard, L., A renormalization method for the evaluation of lattice sums, J. Math. Phys., 35, 6036-6048 (1994) · Zbl 0819.65013
[6] Berryman, J. G., Interpolating and integrating three-point correlation functions on a lattice, J. Comput. Phys., 75, 86-102 (1988) · Zbl 0637.65149
[7] Carrier, J.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm for particle simulations, SIAM J. Sci. Stat. Comput., 9, 669-686 (1988) · Zbl 0656.65004
[8] Chen, C. H.; Cheng, S., Mechanical properties of fiber reinforced composites, J. Composite Mater., 1, 30-41 (1967)
[9] Eischen, J. W.; Torquato, S., Determining elastic behavior of composites by the boundary element method, J. Appl. Phys., 74, 159-170 (1993)
[10] Flaherty, J. E.; Keller, J. B., Elastic behavior of composite media, Comm. Pure Appl. Math., 26, 565-580 (1973) · Zbl 0255.73025
[11] Greenbaum, A.; Greengard, L.; Mayo, A., On the numerical solution of the biharmonic equation in the plane, Physica D, 60, 216-225 (1992) · Zbl 0824.65117
[12] Greengard, L.; Moura, M., On the numerical evaluation of electrostatic fields in composite materials, (Acta Numerica 1994 (1994), Cambridge University Press: Cambridge University Press Cambridge), 379-410 · Zbl 0815.73047
[13] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348 (1987) · Zbl 0629.65005
[14] Hashin, Z., On elastic behaviour of fibre reinforced materials of arbitrary transverse geometry, J. Mech. Phys. Solids, 13, 119-134 (1965)
[15] Helsing, J., Bounds on the shear modulus of composites by interface integral methods, J. Mech. Phys. Solids, 42, 1123-1138 (1994) · Zbl 0806.73039
[16] Helsing, J., An integral equation method for electrostatics of anisotropic composites, (TRITA-NA-9406 preprint (1994), Department of Numerical Analysis and Computing Science, Royal Institute of Technology: Department of Numerical Analysis and Computing Science, Royal Institute of Technology Stockholm) · Zbl 0837.65131
[17] Helsing, J., Fast and accurate calculations of structural parameters for suspensions, (Proc. R. Soc. Lond. A, 445 (1994)), 127-140
[18] Jaswon, M. A.; Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics (1977), Academic Press: Academic Press New York · Zbl 0414.45001
[19] Kantor, Y.; Bergman, D. J., Elastostatic resonances—a new approach to the calculation of the effective elastic constants of composites, J. Mech. Phys. Solids, 30, 355-376 (1982) · Zbl 0488.73067
[20] McPhedran, R. C.; Milton, G. W., Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A, 26, 207-220 (1981)
[21] McPhedran, R. C.; Movchan, A. B., The Rayleigh multipole method for linear elasticity, J. Mech. Phys. Solids, 42, 711-727 (1994) · Zbl 0803.73012
[22] Milton, G. W., Bounds on the elastic and transport properties of two-component composites, J. Mech. Phys. Solids, 30, 177-191 (1982) · Zbl 0486.73063
[23] Nachtigal, N. M.; Reddy, S. C.; Trefethen, L. N., How fast are nonsymmetric matrix iteration?, SIAM J. Matrix Anal. Appl., 13, 778-795 (1992) · Zbl 0754.65036
[24] Perrins, W. T.; McKenzie, D. R.; McPhedran, R. C., Transport properties of regular arrays of cylinders, (Proc. R. Soc. Lond. A, 369 (1979)), 207-225
[25] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in FORTRAN, ((1992), Cambridge University Press: Cambridge University Press Cambridge), 780 · Zbl 0778.65002
[26] Rokhlin, V., Rapid Solution of integral equations of classical potential theory, J. Comput. Phys., 60, 187-207 (1985) · Zbl 0629.65122
[27] Silnutzer, N., Effective constants of statistically homogeneous materials, (Ph.D. thesis (1972), University of Pennsylvania: University of Pennsylvania Philadelphia)
[28] Torquato, S.; Beasley, J. D., Bounds on the effective elastic moduli of dispersions of fully penetrable cylinders, Int. J. Engng Sci., 24, 435-447 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.