×

Bounds on the shear modulus of composites by interface integral methods. (English) Zbl 0806.73039

Summary: The structural parameter \(\eta_ 2\) enters into third-order bounds on the effective shear modulus of two-component composites. Its definition is often given as an integral over correlation functions. We show how to express \(\eta_ 2\) as an integral over the component interfaces. This leads to substantial simplifications from a numerical viewpoint. For the simple hexagonal array of disks we give \(\eta_ 2\) to double precision accuracy for any volume fraction. In the past only one accurate digit, or less, has been achieved for this geometry. We also discuss how to apply the fast multipole method to make possible the calculation of \(\eta_ 2\) for suspensions with thousands of disks per unit cell and for composites with arbitrary geometries.

MSC:

74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Berman, L.; Greengard, L., A renormalization method for the evaluation of lattice sums, Comm. Math. Phys. (1994), (submitted). · Zbl 0819.65013
[2] Berryman, J. G., Interpolating and integrating three-point correlation functions on a lattice, J. Comput. Phys., 75, 86-102 (1988) · Zbl 0637.65149
[3] Brown, W. F., Solid mixture permittivities, J. Chem. Phys., 23, 1514-1517 (1955)
[4] Eischen, J. W.; Torquato, S., Determining elastic behavior of composites by the boundary element method, J. Appl. Phys., 74, 159-170 (1993)
[5] Greenbaum, A.; Greengard, L.; Mayo, A., On the numerical solution of the biharmonic equation in the plane, Physica D, 60, 216-225 (1992) · Zbl 0824.65117
[6] Greengard, L.; Helsing, J., A numerical study of the \(ξ_2\) parameter for random suspensions of disks, J. Appl. Phys. (1994), (submitted).
[7] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348 (1987) · Zbl 0629.65005
[8] Helsing, J., Bounds on the conductivity of some two-component composites, J. Appl. Phys., 73, 1240-1245 (1993)
[9] Helsing, J., Fast and accurate calculations of structural parameters for suspensions, (Proc. R. Soc. Lond. A (1994)), (in press).
[10] Hinsen, K.; Felderhof, B. U., Dielectric constant of a suspension of uniform Spheres, Phys. Rev. B, 46, 12955-12963 (1992)
[11] Joslin, C. G.; Stell, G., Effective properties of fiber-reinforced composites: effects of polydispersivity in fiber radius, J. Appl. Phys., 60, 1610 (1986)
[12] Kantor, Y.; Bergman, D. J., The optical properties of cermets from the theory of electric resonances, Phys. C, 15, 2033-2044 (1982)
[13] Kantor, Y.; Bergman, D. J., Elastic resonances—a new approach to the calculation of the effective elastic constants of composites, J. Mech. Phys. Solids, 30, 355-376 (1982) · Zbl 0488.73067
[14] McPhedran, R. C.; Milton, G. W., Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A, 26, 207-220 (1981)
[15] Miller, C. A.; Torquato, S., Effective conductivity of hard-sphere dispersions, J. Appl. Phys., 68, 5486-5493 (1990)
[16] Miller, C. A.; Torquato, S., Improved bounds on elastic and transport properties of fiber-reinforced composites: effect of polydispersivity in fiber radius, J. Appl. Phys., 69, 1948-1955 (1991)
[17] Milton, G. W., Bounds on the electromagnetic, elastic, and other properties of two-component composites, Phys. Rev. Lett., 46, 542-545 (1981)
[18] Milton, G. W., Bounds on the elastic and transport properties of two-component composites, J. Mech. Phys. Solids, 30, 177-191 (1982) · Zbl 0486.73063
[19] Milton, G. W., Multicomponent composites, electrical networks and new types of continued fractions I, Commun. Math. Phys., 111, 281-327 (1987) · Zbl 0624.41017
[20] Milton, G. W.; kohn, R. V., Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36, 597-629 (1988) · Zbl 0672.73012
[21] Milton, G. W.; Phan-Thien, N., New bounds on effective elastic moduli of two-component materials, (Proc. R. Soc. Lond. A, 380 (1982)), 305-331 · Zbl 0497.73016
[22] Perrins, W. T.; McKenzie, D. R.; McPhedran, R. C., Transport properties of regular arrays of cylinders, (Proc. R. Soc. Lond. A, 369 (1979)), 207-225
[23] Rayleigh, J. W., On the influence of obstacles arranged in rectangular order on the properties of the medium, Phil. Mag., 34, 481-502 (1892) · JFM 24.1015.02
[24] Sangani, A. S.; Yao, C., Transport properties in random arrays of cylinders. I. Thermal conduction, Phys. Fluids, 31, 2426-2434 (1988) · Zbl 0649.76050
[25] Thovert, J. F.; Kim, I. C.; Torquato, S.; Acrivos, A., Bounds on the effective properties of polydispersed suspensions of spheres : an evaluation of two relevant morphological parameters, J. Appl. Phys., 67, 6088-6098 (1990)
[26] Torquato, S.; Beasley, J. D., Bounds on the effective thermal conductivity of dispersions of fully penetrable cylinders, Int. J. Engng Sci., 24, 415-433 (1986)
[27] Torquato, S.; Beasley, J. D., Bounds on the effective elastic moduli of dispersions of fully penetrable cylinders, Int. J. Engng Sci., 24, 435-447 (1986)
[28] Torquato, S.; Lado, F., Bounds on the conductivity of a random array of cylinders, (Proc. R. Soc. Lond. A, 417 (1988)), 59-80
[29] Torquato, S.; Stell, G., Bounds on the effective thermal conductivity of a dispersion of fully penetrable spheres, Lett. Appl. Engng. Sci., 23, 375-383 (1985)
[30] Torquato, S.; Stell, G.; Beasley, J. D., Third-order bounds on the effective bulk and shear modulus of a dispersion of fully penetrable spheres, Lett. Appl. Engng Sci., 23, 385-392 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.