×

A renormalization method for the evaluation of lattice sums. (English) Zbl 0819.65013

The authors are concerned with (renormalization-) methods for the efficient evaluation of lattice sums of the form \[ S_ n = \sum_{(k_ 1, k_ 2) \in \mathbb{Z}^ 2 \backslash \{(0,0) \}} {1 \over (k_ 1 + ik_ 2)^ n} \quad (n \geq 3) \] and \[ {\mathcal L}^ m_ n = \sum_{p \in \mathbb{Z}^ 3 \backslash \{(0,0,0)\}}Y^ m_ n (\theta_ p, \varphi_ p)/r_ p^{n + 1} \quad (n \geq 3,\;m = 0, \dots, n), \] where \(Y^ m_ n (\theta_ p, \varphi_ p)/r_ p^{n+1}\) is a spherical harmonic of degree \((-n-1)\) and \((r_ p, \theta_ p, \varphi_ p)\) are the spherical coordinates of the lattice point \(p\). The sums \[ \widetilde S_ n = \sum_{(k_ 1, k_ 2) \in \mathbb{Z}^ 2 \backslash {\mathcal N}} {1 \over (k_ 1 + ik_ 2)^ n} \] with \({\mathcal N} = \{(k_ 1, k_ 2) \in \mathbb{Z}^ 2 : | k_ 1 |\), \(| k_ 2 | \leq 1\}\) are calculated approximately by recursion, where the recursion relation is obtained by truncation of \[ \widetilde S_ n - \sum^ \infty_{k=n} (- 1)^{n+k} {\widetilde S_ k \over 3^ k} {k - 1 \choose n - 1} Q_{k- n} = R_ n \] with \[ Q_ n = \sum_{(k_ 1, k_ 2) \in {\mathcal N}} (k_ 1 + ik_ 2)^ n \quad \text{and} \quad R_ n = \sum_{{(k_ 1, k_ 2) \in \mathbb{Z}^ 2 \backslash {\mathcal N} \atop | k_ 1 |, | k_ 2 | \leq 4}} {1 \over (k_ 1 + ik_ 2)^ n}. \] A similar approach is described for the evaluation of \({\mathcal L}^ m_ n\). In both cases, error bounds are given.
Reviewer: J.Müller (Trier)

MSC:

65D20 Computation of special functions and constants, construction of tables
33C55 Spherical harmonics
Full Text: DOI

References:

[1] DOI: 10.1080/14786449208620364 · doi:10.1080/14786449208620364
[2] DOI: 10.1016/S0031-8914(57)92124-9 · Zbl 0131.46201 · doi:10.1016/S0031-8914(57)92124-9
[3] DOI: 10.1016/0022-247X(89)90032-2 · Zbl 0682.10028 · doi:10.1016/0022-247X(89)90032-2
[4] DOI: 10.1007/BF01030008 · doi:10.1007/BF01030008
[5] DOI: 10.1016/0022-5096(94)90063-9 · Zbl 0806.73039 · doi:10.1016/0022-5096(94)90063-9
[6] DOI: 10.1016/0021-9991(87)90140-9 · Zbl 0629.65005 · doi:10.1016/0021-9991(87)90140-9
[7] DOI: 10.1098/rspa.1978.0129 · doi:10.1098/rspa.1978.0129
[8] DOI: 10.1016/0167-2789(92)90238-I · Zbl 0824.65117 · doi:10.1016/0167-2789(92)90238-I
[9] McPhedran R. C., J. Electromagnetic Waves Appl. 6 pp 1327– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.