×

Bicovariant quantum algebras and quantum Lie algebras. (English) Zbl 0808.17010

The notion of algebra of differential operators on a group \(G\) is generalized to the deformed case. The deformed algebra of functions \({\mathfrak A}\equiv \text{Fun} (G_ q)\) is combined with the universal enveloping algebra \({\mathfrak U}\equiv U_ q {\mathfrak g}\) into a new algebra, the cross product \({\mathfrak A} \rtimes {\mathfrak U}\), according to the rule \[ ax\cdot by=ab_{(1)} \langle x_{(1)}, b_{(2)}\rangle x_{(2)}y, \qquad \forall a,b\in {\mathfrak A},\quad \forall x,y\in {\mathfrak U}. \] Here \(\Delta(c)= c_{(1)}\otimes c_{(2)}\) (Sweedler’s notation). Left and right \({\mathfrak A}\)-coactions \({}_{\mathfrak A}\Delta\) and \(\Delta_{\mathfrak A}\) on the cross product are introduced and studied. They are given by \({}_{\mathfrak A}\Delta (by)= b_{(1)}\otimes b_{(2)}y\) and \(\Delta_{\mathfrak A} (by)= \sum_ j (b_{(1)}\cdot e_ j {\overset {\text{ad}} \vartriangleright}y) \otimes b_{(2)} f^ j\), with \(\{e_ j\}\) and \(\{f^ j\}\) being mutually dual bases. The adjoint action “\({\overset {\text{ad}} \vartriangleright}\)” is defined as usual.
Furthermore, invariant maps \(\Phi\) from \(\text{Fun} (G_ q)\) to \(U_ q {\mathfrak g}\) are introduced with the help of elements of the pure braid group \(B_ n\). By definition, \({\mathcal Z}\in \text{span} \{B_ n\}\) iff \({\mathcal Z}\in {\mathfrak U}^{ \widehat{\otimes} n}\) and \({\mathcal Z} \Delta^{(n-1)} (x)= \Delta^{(n-1)} (x){\mathcal Z}\), \(\forall x\in{\mathfrak U}\). Particular examples are constructed using the universal \({\mathcal R}\)- matrix: \({\mathcal Z}={\mathcal R}^{21} {\mathcal R}^{12},\;{\mathcal R}^{21} {\mathcal R}^{31} {\mathcal R}^{13} {\mathcal R}^{12},\ldots\). Let \(A\in \text{Mat}_ n ({\mathfrak A})\) be the defining (vector) corepresentation of \({\mathfrak A}\) and set \({\mathcal Z}={\mathcal R}^{21}{\mathcal R}^{12}\). Then the map \(\Phi\) produces the so called “reflection matrix” \(Y:= \Phi({\mathcal A})\in \text{Mat}_ n ({\mathfrak U})\), with remarkable transformation properties. The vector space spanned by entries of \(Y\) is closed under the adjoint action. This property is considered as a basis for the notion of quantum Lie algebra.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
46L85 Noncommutative topology
46L87 Noncommutative differential geometry
20F36 Braid groups; Artin groups

References:

[1] Woronowicz, S.L.: Commun. Math. Phys.122, 125 (1989) · Zbl 0751.58042 · doi:10.1007/BF01221411
[2] Majid, S.: Int. J. Mod. Phys.A5, 1 (1990) · Zbl 0709.17009 · doi:10.1142/S0217751X90000027
[3] Sweedler, M.E.: Hopf Algebras. New York: Benjamin 1969 · Zbl 0194.32901
[4] Drinfel’d, V.G.: Proc. Int. Congr. Math., Berkeley, 798 (1986)
[5] Woronowicz, S.L.: Commun. Math. Phys.111, 613 (1987) · Zbl 0627.58034 · doi:10.1007/BF01219077
[6] Reshetikhin, N.Yu., Takhtadzhyan, L.A., Faddeev, L.D.: Leningrad Math. J.1, 193 (1990)
[7] Reshetikhin, N.Yu.: Leningrad Math. J.1 (2), 491 (1990)
[8] Schupp, P., Watts, P., Zumino, B.: Lett. Math. Phys.25, 139 (1992) · Zbl 0765.17020 · doi:10.1007/BF00398310
[9] Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Lett. Math. Phys.19 (1990)
[10] Jurčo, B.: Lett. Math. Phys.22, 177 (1991) · Zbl 0753.17020 · doi:10.1007/BF00403543
[11] Kulish, P.P., Sasaki, R., Schwiebert, C.: J. Math. Phys.34, 286 (1993) · Zbl 0799.17010 · doi:10.1063/1.530382
[12] Zumino, B.: In: Schmüdgen, K. (ed.), Math. Phys. X, Proc. X-th IAMP Conf. Leipzig 1991, Berlin, Heidelberg, New York: Springer 1992
[13] Zumino, B.: In: M.O., N.S., J.M.G. (eds.), Proc. XIX-th ICGTMP Salamanca (1992), CIEMAT/RSEF, Madrid (1993)
[14] Majid, S.: J. Math. Phys.34, 1176 (1993) · Zbl 0781.17005 · doi:10.1063/1.530193
[15] Chryssomalakos, C.: Mod. Phys. Lett.A7, 2851 (1992) · Zbl 1021.81565 · doi:10.1142/S0217732392004225
[16] Chryssomalakos, C., Drabant, B., Schlieker, M., Weich, W., Zumino, B.: Commun. Math. Phys.147 (3), 635 (1992) · Zbl 0763.17012 · doi:10.1007/BF02097246
[17] Drabant, B., Jurčo, B., Schlieker, M., Weich, W., Zumino, B.: Lett. Math. Phys.26, 91 (1992) · Zbl 0766.17011 · doi:10.1007/BF00398805
[18] Majid, S.: Preprint, DAMTP/92-10
[19] Bernard, D.: Prog. of Theoretical Phys. Supp.102, 49 (1990) · doi:10.1143/PTPS.102.49
[20] Aschieri, P., Castellani, L.: Int. J. Mod. Phys.A8, 1667 (1993) · Zbl 0802.58007 · doi:10.1142/S0217751X93000692
[21] Woronowicz, S.L.: Lett. Math. Phys.23, 251 (1991) · Zbl 0752.17017 · doi:10.1007/BF00398822
[22] Schupp, P., Watts, P., Zumino, B.: Lett. Math. Phys.24, 141 (1992) · Zbl 0762.17016 · doi:10.1007/BF00402677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.