×

Quantum and braided linear algebra. (English) Zbl 0781.17005

Let \(M_ n(k)\) be the algebra of \(n\times n\) matrices over a field \(k\). To any element \(R\in M_ n(k)^{\otimes 2}\) is associated a bialgebra \(A(R)\), which is generated as an algebra by \(n^ 2\) elements \(t_{ij}\), \(1\leq i,j\leq n\), with defining relations (*) \(R(T\otimes 1)(1\otimes T)= (1\otimes T)(T\otimes 1)R\), where \(T=(t_{ij})\). Under certain circumstances, one can find distinguished elements of \(A(R)\), called quantum determinants, such that the quotient of \(A(R)\) by the ideal they generate is a Hopf algebra \(H(R)\).
There is a natural action of \(H(R)\) on \(A(R)\), but, in general, this is not ‘covariant’, i.e. \(A(R)\) is not an \(H(R)\)-module algebra. To achieve covariance, the defining relations (*) must be modified – this leads to an algebra \(B(R)\) which the author calls a ‘braided group’. The general properties of \(B(R)\) are discussed, and several examples are given arising from certain standard \(R\)-matrices.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

References:

[1] Faddeev L. D., Algebra i Analiz 1 (1989)
[2] DOI: 10.1142/S0217751X90000027 · Zbl 0709.17009 · doi:10.1142/S0217751X90000027
[3] DOI: 10.1063/1.529485 · Zbl 0821.16042 · doi:10.1063/1.529485
[4] DOI: 10.1007/BF00403542 · Zbl 0745.16019 · doi:10.1007/BF00403542
[5] DOI: 10.1007/BF02764616 · Zbl 0725.17015 · doi:10.1007/BF02764616
[6] DOI: 10.1016/0370-2693(92)90058-C · doi:10.1016/0370-2693(92)90058-C
[7] DOI: 10.1143/PTPS.102.203 · doi:10.1143/PTPS.102.203
[8] DOI: 10.3792/pjaa.66.112 · Zbl 0723.17012 · doi:10.3792/pjaa.66.112
[9] DOI: 10.1088/0305-4470/25/13/007 · doi:10.1088/0305-4470/25/13/007
[10] DOI: 10.1080/00927879108824320 · Zbl 0751.16014 · doi:10.1080/00927879108824320
[11] Gurevich D. I., Leningrad Math. J. 2 pp 801– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.