×

Quantum \(E(2)\) group and its Pontryagin dual. (English) Zbl 0752.17017

This paper is concerned with the quantum group \(E_ \mu(2)\) [see also the author, Commun. Math. Phys. 136, 399-432 (1991; Zbl 0743.46080), L. Vaksman and L. Korogodskij, Dokl. Akad. Nauk SSSR 304, 1036- 1040 (1989; Zbl 0699.46053), E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, J. Math. Phys. 31, 2548-2551 (1990; Zbl 0725.17020)].
The author recalls the definition of the \(C^*\)-algebra of “continuous functions vanishing at infinity” on this quantum group and proves the existence of the comultiplication, in the operator-theory framework. Then he proves a theorem characterizing the unitary representations of \(E_ \mu(2)\), that is, the unitary comodules of that algebra. The same task is accomplished with the Pontryagin dual of \(E_ \mu(2)\), which is, in addition, shown to be a deformation of the group of transformations of the plane generated by translations and dilations.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
22D35 Duality theorems for locally compact groups
46L60 Applications of selfadjoint operator algebras to physics
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI

References:

[1] Baaj, S. and Jungl, P., Théorie bivariant de Kasparow et opérateur non bornés dans les C *-modules hilbertiens, C. R. Acad. Sci. Paris, Série I, 296, 875-878 (1983), see also S. Baaj, Multiplicateur non bornés. Thése 3éme Cycle, Université Paris, VI, 11 Decembre 1980.
[2] Baaj, S. and Skandalis, G., Unitaires multiplicative et dualite pour les produits croisés de C *-algebres, Preprint, Université Paris VII. · Zbl 0804.46078
[3] Celeghini, E., Giachetti, R., Sorace, E., and Tarlini, M., Three-dimensional quantum groups from contractions of SU(2) q J. Math. Physics 31(11), 2548 (1990). · Zbl 0725.17020 · doi:10.1063/1.529000
[4] Landstad, M. B., Duality theory of covariant systems, Trans. Amer. Math. Soc. 248(2), 223-267 (1979). · Zbl 0397.46059 · doi:10.1090/S0002-9947-1979-0522262-6
[5] Pedersen, G. K., C *-Algebras and their Automorphism Groups, Academic Press, London, New York, San Francisco, 1979. · Zbl 0416.46043
[6] Podle?, P. and Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys. 130, 381-431 (1990). · Zbl 0703.22018 · doi:10.1007/BF02473358
[7] Vaksman L. L. and Korogodskii L. I., The algebra of bounded functions on the quantum group of motions of the plane and q-analogs of Bessel functions, Dokl. Akad. Nauk. USSR 304(5).
[8] Woronowicz, S. L., Pseudospaces, pseudogroups and Pontryagin duality, Proceedings of the International Conference on Mathematical Physics, Lausanne 1979, Lecture Notes in Physics 116, Springer, Berlin, Heidelberg, New York. · Zbl 0513.46046
[9] Woronowicz, S. L., Unbounded elements affiliated with C *-algebras and non-compact quantum groups, Comm. Math. Phys. 136, 399-432 (1991). · Zbl 0743.46080 · doi:10.1007/BF02100032
[10] Woronowicz, S. L., Operator equalities related to quantum E(2) group, to appear in Comm. Math. Phys. · Zbl 0753.47016
[11] Woronowicz S. L. and Napiórkowski K., Operator theory in the C *-algebra framework, to appear in Rep. Math. Phys. · Zbl 0793.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.