×

Earthquakes on Riemann surfaces and on measured geodesic laminations. (English) Zbl 0754.32010

The author’s summary: “Let \(S\) be a closed orientable surface of genus at least 2. We study its Teichmüller space \({\mathcal F}(S)\), namely the space of isotropy classes of conformal structures on \(S\). W. P. Thurston introduced a certain compactification of \({\mathcal F}(S)\) what he called the space of projective measured geodesic laminations. He also introduced some transformations of Teichmüller space, called earthquakes, which are intimately related to the geometry of \({\mathcal F}(S)\). A general problem is to understand which geometric properties of Teichmüller space subsist at infinity, on Thurston’s boundary. In particular, it is natural to ask whether earthquakes continuously extend at certain points of Thurston’s boundary, and at precisely which points they do so. This is the principal question addressed in this paper”.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30F60 Teichmüller theory for Riemann surfaces
57M05 Fundamental group, presentations, free differential calculus
86A17 Global dynamics, earthquake problems (MSC2010)
Full Text: DOI

References:

[1] Harald Bergström, Weak convergence of measures, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. · Zbl 0538.28003
[2] Francis Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no. 1, 71 – 158 (French). · Zbl 0671.57008 · doi:10.2307/1971388
[3] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139 – 162. · Zbl 0653.32022 · doi:10.1007/BF01393996
[4] N. Bourbaki, Éléments de mathématiques. Livre VI (Intégration), Hermann, Paris, 1965. · Zbl 0136.03404
[5] Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. · Zbl 0649.57008
[6] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113 – 253. · Zbl 0612.57010
[7] Albert Fathi, Dehn twists and pseudo-Anosov diffeomorphisms, Invent. Math. 87 (1987), no. 1, 129 – 151. · Zbl 0618.58027 · doi:10.1007/BF01389156
[8] Albert Fathi, The Poisson bracket on the space of measured foliations on a surface, Duke Math. J. 55 (1987), no. 3, 693 – 697. · doi:10.1215/S0012-7094-87-05534-7
[9] Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. · Zbl 0731.57001
[10] W. Fenchel and J. Nielsen, Discontinuous groups of non-Euclidean motions, unpublished manuscript. · Zbl 0034.38101
[11] Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235 – 265. · Zbl 0528.57008 · doi:10.2307/2007076
[12] Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119 – 135. · Zbl 0522.57027 · doi:10.1016/0040-9383(83)90023-X
[13] Athanase Papadopoulos, L’extension du flot de Fenchel-Nielsen au bord de Thurston de l’espace de Teichmüller, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 8, 325 – 327 (French, with English summary). · Zbl 0598.57016
[14] Athanase Papadopoulos, Deux remarques sur la géométrie symplectique de l’espace des feuilletages mesurés sur une surface, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 127 – 141 (French, with English summary). · Zbl 0576.57026
[15] Athanase Papadopoulos, Geometric intersection functions and Hamiltonian flows on the space of measured foliations on a surface, Pacific J. Math. 124 (1986), no. 2, 375 – 402. · Zbl 0608.58036
[16] -, On Thurston’s boundary of Teichmüller space and the extension of earthquakes, Topology Appl. (to appear). · Zbl 0761.57009
[17] Mary Rees, An alternative approach to the ergodic theory of measured foliations on surfaces, Ergodic Theory Dynamical Systems 1 (1981), no. 4, 461 – 488 (1982). · Zbl 0539.58018
[18] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417 – 431. · Zbl 0674.57008
[19] -, The geometry and topology of \( 3\)-manifolds, lecture notes, Princeton University, 1976-1979. · Zbl 0944.81047
[20] William P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91 – 112.
[21] Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501 – 528. · Zbl 0496.30039 · doi:10.2307/2007011
[22] Scott Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), no. 2, 207 – 234. · Zbl 0518.30040 · doi:10.2307/2007075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.