×

Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. (English) Zbl 07482837

Summary: Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains (\(>300\delta_i\), with \(\delta_i\) the inflow boundary-layer thickness) at three different Mach numbers, 2.5, 4.9 and 10.9, with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number \(Re_\tau \approx 1200\)) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increase in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region.

MSC:

76-XX Fluid mechanics

References:

[1] Baidya, R., Philip, J., Hutchins, N., Monty, J. & Marusic, I.2021Spanwise velocity statistics in high-Reynolds-number turbulent boundary layers. J. Fluid Mech.913, A35. · Zbl 1461.76253
[2] Bernardini, M. & Pirozzoli, S.2011aInner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids23 (6), 061701.
[3] Bernardini, M. & Pirozzoli, S.2011bWall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids23 (8), 085102. · Zbl 1241.76286
[4] Bertin, J.J. & Cummings, R.M.2006Critical hypersonic aerothermodynamic phenomena. Annu. Rev. Fluid Mech.38, 129-157. · Zbl 1097.76044
[5] Bowersox, R.D.W.2009Extension of equilibrium turbulent heat flux models to high-speed shear flows. J. Fluid Mech.633, 61-70. · Zbl 1183.76752
[6] Bowersox, R.D.W. & North, S.W.2010Algebraic turbulent energy flux models for hypersonic shear flows. Prog. Aerosp. Sci.46, 49-61.
[7] Bradshaw, P.1977Compressible turbulent shear layers. Annu. Rev. Fluid Mech.9 (1), 33-52. · Zbl 0412.76049
[8] Brooks, J., Gupta, A., Smith, M. & Marineau, E.2018Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers. Exp. Fluids59 (5), 83.
[9] Bross, M., Scharnowski, S. & Kähler, C.J.2021Large-scale coherent structures in compressible turbulent boundary layers. J. Fluid Mech.911, A2. · Zbl 1461.76255
[10] Burns, R.A., Koo, H., Raman, V. & Clemens, N.T.2015Improved large-eddy simulation validation methodology: application to supersonic inlet/isolator flow. AIAA J.53 (4), 817-831.
[11] Busemann, A.1931Handbuch der Experimentalphysik, vol. 4. Geest und Portig. · JFM 57.1115.02
[12] Chi, S. & Spalding, D.B.1966 Influence of temperature ratio on heat transfer to a flat plate through a turbulent boundary layer in air. In International Heat Transfer Conference, 3rd, Chicago, Illinois, pp. 41-49.
[13] Coleman, G.N., Kim, J. & Moser, R.D.1995A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech.305, 159-183. · Zbl 0960.76517
[14] Crocco, L.1932Sulla trasmissione del calore da una lamina piana a un fluido scorrente ad alta velocita. LAerotecnica12, 181-197. · JFM 58.1320.03
[15] Del Alamo, J.C. & Jiménez, J.2003Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids15 (6), L41-L44. · Zbl 1186.76136
[16] Dhamankar, N.S., Martha, C.S., Situ, Y., Aikens, K.M., Blaisdell, G.A., Lyrintzis, A.S. & Li, Z.2014 Digital filter-based turbulent inflow generation for jet aeroacoustics on non-uniform structured grids. In 52nd Aerospace Sciences Meeting. AIAA Paper 2014-1401.
[17] Duan, L., Beekman, I. & Martin, M.2010Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech.655, 419-445. · Zbl 1197.76078
[18] Duan, L., Beekman, I. & Martin, M.2011Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech.672, 245-267. · Zbl 1225.76160
[19] Duan, L., Choudhari, M.M. & Wu, M.2014Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J. Fluid Mech.746, 165-192.
[20] Duan, L., Choudhari, M.M. & Zhang, C.2016Pressure fluctuations induced by a hypersonic turbulent boundary layer. J. Fluid Mech.804, 578-607.
[21] Duan, L. & Martin, M.2011Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech.684, 25-59. · Zbl 1241.76277
[22] Eitel-Amor, G., Örlü, R. & Schlatter, P.2014Simulation and validation of a spatially evolving turbulent boundary layer up to \(Re_\theta =8300\). Intl J. Heat Fluid Flow47, 57-69.
[23] Erm, L.P. & Joubert, P.N.1991Low-Reynolds-number turbulent boundary layers. J. Fluid Mech.230, 1-44.
[24] Fernholz, H.-H. & Finley, P.1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARD-AG-253.
[25] Ganapathisubramani, B., Clemens, N.T. & Dolling, D.S.2006Large scale motions in a supersonic turbulent boundary layer. J. Fluid Mech.556, 271-282. · Zbl 1093.76510
[26] Gnoffo, P., Berry, S. & Van Norman, J.2011 Uncertainty assessments of 2D and axisymmetric hypersonic shock wave-turbulent boundary layer interaction simulations at compression corners. AIAA Paper 2011-3124.
[27] Gnoffo, P.A., Berry, S.A. & Van Norman, J.W.2013Uncertainty assessments of hypersonic shock wave-turbulent boundary-layer interactions at compression corners. J. Spacecr. Rockets50 (1), 69-95.
[28] Goyne, C., Stalker, R. & Paull, A.2003Skin-friction measurements in high-enthalpy hypersonic boundary layers. J. Fluid Mech.485, 1-32. · Zbl 1109.76004
[29] Griffin, K.P., Fu, L. & Moin, P.2021Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA118 (34), e2111144118.
[30] Holden, M.S.1972 An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers. NASA CR-112147.
[31] Hopkins, E.J. & Inouye, M.1971An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J.6 (9), 993-1003.
[32] Hopkins, E.J., Keener, E.R., Polek, T.E. & Dwyer, H.A.1972Hypersonic turbulent skin-friction and boundary-layer profiles on nonadiabatic flat plates. AIAA J.10 (1), 40-48.
[33] Huang, J. & Duan, L.2016 Turbulent inflow generation for direct simulations of hypersonic turbulent boundary layers and their freestream acoustic radiation. In 46th AIAA Fluid Dynamics Conference. AIAA Paper 2016-3639.
[34] Huang, J., Nicholson, G.L., Duan, L., Choudhari, M.M. & Bowersox, R.D.2020 Simulation and modeling of cold-wall hypersonic turbulent boundary layers on flat plate. AIAA Scitech 2020 Forum. AIAA Paper 2020-0571.
[35] Huang, P., Bradshaw, P. & Coakley, T.1993Skin friction and velocity profile family for compressible turbulentboundary layers. AIAA J.31 (9), 1600-1604. · Zbl 0785.76063
[36] Huang, P.G., Coleman, G.N. & Bradshaw, P.1995Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.305, 185-218. · Zbl 0857.76036
[37] Hutchins, N. & Marusic, I.2007aEvidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.579, 1-28. · Zbl 1113.76004
[38] Hutchins, N. & Marusic, I.2007bLarge-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A365 (1852), 647-664. · Zbl 1152.76421
[39] Jeong, J. & Hussain, F.1995On the identification of a vortex. J. Fluid Mech.285, 69-94. · Zbl 0847.76007
[40] Jiang, G.-S. & Shu, C.-W.1996Efficient implementation of weighted ENO schemes. J. Comput. Phys.126 (1), 202-228. · Zbl 0877.65065
[41] Johnson, C.B. & Bushnell, D.M.1970Power-Law Velocity-Profile-Exponent Variations with Reynolds Number, Wall Cooling, and Mach Number in a Turbulent Boundary Layer. NASA TN D-5753.
[42] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177, 133-166. · Zbl 0616.76071
[43] Kim, K. & Adrian, R.1999Very large-scale motion in the outer layer. Phys. Fluids11 (2), 417-422. · Zbl 1147.76430
[44] Lagha, M., Kim, J., Eldredge, J. & Zhong, X.2011A numerical study of compressible turbulent boundary layers. Phys. Fluids23 (1), 015106.
[45] Lee, M. & Moser, R.D.2015Direct numerical simulation of turbulent channel flow up to \({Re}_{\tau }\approx 5200\). J. Fluid Mech.774, 395-415.
[46] Martín, M.P.2004 DNS of hypersonic turbulent boundary layers. 34th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2004-2337.
[47] Martín, M.P.2007Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech.570, 347-364. · Zbl 1105.76031
[48] Marusic, I.2009Unravelling turbulence near walls. J. Fluid Mech.630, 1-4. · Zbl 1181.76083
[49] Marusic, I. & Monty, J.P.2019Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech.51, 49-74. · Zbl 1412.76038
[50] Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J.2013On the logarithmic region in wall turbulence. J. Fluid Mech.716, R3. · Zbl 1284.76206
[51] Modesti, D. & Pirozzoli, S.2016Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow59, 33-49.
[52] Monkewitz, P.A., Chauhan, K.A. & Nagib, H.M.2007Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids19 (11), 115101. · Zbl 1182.76529
[53] Monty, J., Hutchins, N., Ng, H., Marusic, I. & Chong, M.2009A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.632, 431-442. · Zbl 1183.76036
[54] Morgan, B., Duraisamy, K., Nguyen, N. & Lele, S.K.2013Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech.729, 231-284. · Zbl 1291.76172
[55] Morgan, B., Larsson, J., Kawai, S. & Lele, S.K.2011Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J.49 (3), 582-597.
[56] Morkovin, M.V.1962 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. A.J. Favre), pp. 367-380. CNRS.
[57] Moser, R.D., Kim, J. & Mansour, N.N.1999Direct numerical simulation of turbulent channel flow up to \(Re_{\tau }=590\). Phys. Fluids11 (4), 943-945. · Zbl 1147.76463
[58] Nagib, H.M., Chauhan, K.A. & Monkewitz, P.A.2007Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. Lond. A365 (1852), 755-770. · Zbl 1152.76412
[59] Nicholson, G., Huang, J., Duan, L., Choudhari, M.M. & Bowersox, R.D.2021 Simulation and modeling of hypersonic turbulent boundary layers subject to favorable pressure gradients due to streamline curvature. AIAA Scitech 2021 Forum. AIAA Paper 2021-1672.
[60] Patel, A., Peeters, J.W., Boersma, B.J. & Pecnik, R.2015Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids27 (9), 095101.
[61] Peltier, S., Humble, R. & Bowersox, R.2016Crosshatch roughness distortions on a hypersonic turbulent boundary layer. Phys. Fluids28 (4), 045105.
[62] Perry, A. & Li, J.D.1990Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech.218, 405-438.
[63] Pirozzoli, S.2010Generalized conservative approximations of split convective derivative operators. J. Comput. Phys.229 (19), 7180-7190. · Zbl 1426.76485
[64] Pirozzoli, S.2011Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates. J. Comput. Phys.230 (8), 2997-3014. · Zbl 1316.76064
[65] Pirozzoli, S. & Bernardini, M.2011Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech.688, 120-168. · Zbl 1241.76286
[66] Pirozzoli, S. & Bernardini, M.2013Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids25 (2), 021704. · Zbl 1241.76286
[67] Poggie, J., Bisek, N.J. & Gosse, R.2015Resolution effects in compressible, turbulent boundary layer simulations. Comput. Fluids120, 57-69. · Zbl 1390.76207
[68] Priebe, S. & Martin, P.2011 Direct numerical simulation of a hypersonic turbulent boundary layer on a large domain. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3432.
[69] Ringuette, M.J., Wu, M. & Martin, M.P.2008Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech.594, 59-69. · Zbl 1159.76342
[70] Roy, C.J. & Blottner, F.G.2006Review and assessment of turbulence models for hypersonic flows. Prog. Aerosp. Sci.42 (7-8), 469-530.
[71] Rumsey, C.L.2010Compressibility considerations for kw turbulence models in hypersonic boundary-layer applications. J. Spacecr. Rockets47 (1), 11-20.
[72] Schlatter, P., Li, Q., Brethouwer, G., Johansson, A.V. & Henningson, D.S.2010Simulations of spatially evolving turbulent boundary layers up to \(Re_{\theta }=4300\). Intl J. Heat Fluid Flow31 (3), 251-261.
[73] Schlatter, P. & Örlü, R.2010Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech.659, 116-126. · Zbl 1205.76139
[74] Schlatter, P., Örl’U, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H. & Henningson, D.S.2009Turbulent boundary layers up to \(Re_\theta = 2500\) studied through simulation and experiment. Phys. Fluids21, 051702. · Zbl 1183.76457
[75] Shadloo, M., Hadjadj, A. & Hussain, F.2015Statistical behavior of supersonic turbulent boundary layers with heat transfer at \(M\infty =2\). Intl J. Heat Fluid Flow53, 113-134.
[76] Shahab, M., Lehnasch, G., Gatski, T. & Comte, P.2011Statistical characteristics of an isothermal, supersonic developing boundary layer flow from DNS data. Flow Turbul. Combust.86 (3-4), 369-397. · Zbl 1432.76127
[77] Sillero, J.A., Jiménez, J. & Moser, R.D.2013One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta^+=2000\). Phys. Fluids25 (10), 105102.
[78] Simens, M.P., Jiménez, J., Hoyas, S. & Mizuno, Y.2009A high-resolution code for turbulent boundary layers. J. Comput. Phys.228 (11), 4218-4231. · Zbl 1273.76009
[79] Smits, A.J., Matheson, N. & Joubert, P.N.1983Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res.27 (03), 147-157.
[80] Smits, A.J. & Dussauge, J.P.2006Turbulent Shear Layers in Supersonic Flow, 2nd edn. American Institute of Physics.
[81] Spalding, D. & Chi, S.1964The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech.18 (1), 117-143. · Zbl 0119.20801
[82] Subbareddy, P. & Candler, G.2011 DNS of transition to turbulence in a hypersonic boundary layer. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3564.
[83] Taylor, E.M., Wu, M. & Martín, M.P.2007Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys.223 (1), 384-397. · Zbl 1165.76350
[84] Thompson, K.W.1987Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys.68 (1), 1-24. · Zbl 0619.76089
[85] Tichenor, N.R., Humble, R.A. & Bowersox, R.D.W.2013Response of a hypersonic turbulent boundary layer to favourable pressure gradients. J. Fluid Mech.722, 187-213. · Zbl 1287.76026
[86] Trettel, A. & Larsson, J.2016Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids28 (2), 026102.
[87] Tsuji, Y., Fransson, J.H., Alfredsson, P.H. & Johansson, A.V.2007Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech.585, 1-40. · Zbl 1122.76044
[88] Van Driest, E.R.1951Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci.18 (3), 145-160. · Zbl 0045.12903
[89] Van Driest, E.R.1956On turbulent flow near a wall. J. Aeronaut. Sci.23 (11), 1007-1011. · Zbl 0073.20802
[90] Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J.2020Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids5 (5), 052602.
[91] Walz, A.1962Compressible Turbulent Boundary Layers, pp. 299-350. CNRS. · Zbl 0118.21202
[92] Wenzel, C.2019 DNS of compressible turbulent boundary layers: pressure-gradient influence and self-similarity. PhD thesis, Institute of Aerodynamics and Gas Dynamics, University of Stuttgart.
[93] Wenzel, C., Selent, B., Kloker, M. & Rist, U.2018DNS of compressible turbulent boundary layers and assessment of data/scaling-law quality. J. Fluid Mech.842, 428-468. · Zbl 1419.76331
[94] Wilcox, D.C.2006Turbulence Modeling for CFD, 3rd edn. DCW industries La Canada.
[95] Williams, O.J.H., Sahoo, D., Baumgartner, M.L. & Smits, A.J.2018Experiments on the structure and scaling of hypersonic turbulent boundary layers. J. Fluid Mech.834, 237-270.
[96] Williamson, J.1980Low-storage Runge-Kutta schemes. J. Comput. Phys.35 (1), 48-56. · Zbl 0425.65038
[97] Wood, N.1964 Calculation of the turbulent boundary layer in the nozzle of an intermittent axisymmetric hypersonic wind tunnel. Aeronautical Research Council CP No. 721.
[98] Wu, B., Bi, W., Hussain, F. & She, Z.-S.2017On the invariant mean velocity profile for compressible turbulent boundary layers. J. Turbul.18 (2), 186-202.
[99] Wu, M. & Martin, M.P.2007Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J.45 (4), 879-889.
[100] Yao, J. & Hussain, F.2020Turbulence statistics and coherent structures in compressible channel flow. Phys. Rev. Fluids5 (8), 084603.
[101] Zhang, C., Duan, L. & Choudhari, M.M.2017Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech.822, 5-30. · Zbl 1383.76255
[102] Zhang, C., Duan, L. & Choudhari, M.M.2018Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J.56 (11), 4297-4311.
[103] Zhang, Y., Bi, W., Hussain, F. & She, Z.2014A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech.739, 392-420.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.