×

Direct numerical simulation of hypersonic turbulent boundary layers. IV: Effect of high enthalpy. (English) Zbl 1241.76277

Summary: In this paper we present direct numerical simulations (DNS) of hypersonic turbulent boundary layers to study high-enthalpy effects. We study high- and low-enthalpy conditions, which are representative of those in hypersonic flight and ground-based facilities, respectively. We find that high-enthalpy boundary layers closely resemble those at low enthalpy. Many of the scaling relations for low-enthalpy flows, such as van-Driest transformation for the mean velocity, Morkovin’s scaling and the modified strong Reynolds analogy hold or can be generalized for high-enthalpy flows by removing the calorically perfect-gas assumption. We propose a generalized form of the modified Crocco relation, which relates the mean temperature and mean velocity across a wide range of conditions, including non-adiabatic cold walls and real gas effects. The DNS data predict Reynolds analogy factors in the range of those found in experimental data at low-enthalpy conditions. The gradient transport model approximately holds with turbulent Prandtl number and turbulent Schmidt number of order unity. Direct compressibility effects remain small and insignificant for all enthalpy cases. High-enthalpy effects have no sizable influence on turbulent kinetic energy (TKE) budgets or on the turbulence structure.

MSC:

76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
76K05 Hypersonic flows
76V05 Reaction effects in flows
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112096007525 · Zbl 0875.76159 · doi:10.1017/S0022112096007525
[2] Duan, AIAA Paper (2009)
[3] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[4] Smits, Turbulent Shear Layers in Supersonic Flow (2006)
[5] DOI: 10.1016/j.paerosci.2006.12.002 · doi:10.1016/j.paerosci.2006.12.002
[6] DOI: 10.1017/S0022112007009020 · Zbl 1159.76342 · doi:10.1017/S0022112007009020
[7] DOI: 10.1063/1.1637604 · Zbl 1186.76423 · doi:10.1063/1.1637604
[8] Park, Nonequilibrium Hypersonic Aerothermodynamics (1990)
[9] O’Farrell, J. Turbul. 10 (2009)
[10] Morkovin, Mécanique de la Turbulence 108 pp 367– (1962)
[11] DOI: 10.1016/j.jcp.2006.05.009 · Zbl 1103.76028 · doi:10.1016/j.jcp.2006.05.009
[12] Martín, Phys. Fluids 11 (1999) · Zbl 1149.76472 · doi:10.1063/1.870135
[13] DOI: 10.1063/1.869688 · doi:10.1063/1.869688
[14] DOI: 10.1017/S0022112006003107 · Zbl 1105.76031 · doi:10.1017/S0022112006003107
[15] DOI: 10.1017/S0022112000002718 · Zbl 1007.76031 · doi:10.1017/S0022112000002718
[16] Keyes, Trans. ASME pp 589– (1951)
[17] DOI: 10.2514/3.50228 · doi:10.2514/3.50228
[18] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[19] DOI: 10.1017/S0022112010000959 · Zbl 1197.76078 · doi:10.1017/S0022112010000959
[20] DOI: 10.1017/S0022112095004599 · Zbl 0857.76036 · doi:10.1017/S0022112095004599
[21] van Driest, Aeronaut. Engng Rev. 15 pp 26– (1956)
[22] DOI: 10.2514/3.6323 · doi:10.2514/3.6323
[23] DOI: 10.1007/s11431-010-0013-8 · doi:10.1007/s11431-010-0013-8
[24] DOI: 10.1017/S0022112095004587 · Zbl 0960.76517 · doi:10.1017/S0022112095004587
[25] DOI: 10.1017/S0022112000008466 · Zbl 0983.76039 · doi:10.1017/S0022112000008466
[26] DOI: 10.1063/1.1758218 · Zbl 1186.76582 · doi:10.1063/1.1758218
[27] Cebeci, Analysis of Turbulent Boundary Layers (1974) · Zbl 0342.76014
[28] DOI: 10.1063/1.861737 · doi:10.1063/1.861737
[29] DOI: 10.1016/0017-9310(87)90010-X · Zbl 0623.76068 · doi:10.1016/0017-9310(87)90010-X
[30] DOI: 10.1016/0021-9991(80)90033-9 · Zbl 0425.65038 · doi:10.1016/0021-9991(80)90033-9
[31] DOI: 10.1146/annurev.fl.09.010177.000341 · doi:10.1146/annurev.fl.09.010177.000341
[32] DOI: 10.1017/S0022112010005902 · Zbl 1225.76160 · doi:10.1017/S0022112010005902
[33] DOI: 10.2514/1.J050508 · doi:10.2514/1.J050508
[34] Wilcox, Turbulence Modeling for CFD (2006)
[35] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[36] DOI: 10.2514/1.38318 · doi:10.2514/1.38318
[37] Walz, Boundary Layers of Flow and Temperature (1969)
[38] Duan, AIAA Paper (2009)
[39] DOI: 10.1007/s10915-006-9126-4 · Zbl 1176.76089 · doi:10.1007/s10915-006-9126-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.