×

Resolution effects in compressible, turbulent boundary layer simulations. (English) Zbl 1390.76207

Summary: This paper presents the first systematic study of resolution in compressible, turbulent boundary simulations, and the best-resolved simulation carried out to date. Direct numerical simulation (DNS) and wall-resolved, implicit large-eddy simulation (ILES-NWR) are carried out for a turbulent boundary layer at a Mach number of \(M = 2.3\) and maximum momentum thickness Reynolds number of \(\operatorname{Re}_{\theta i} = 2 \times 10^3\). The wall temperature is fixed at a constant value corresponding to the nominal adiabatic wall temperature. The flow is developed spatially from a laminar boundary layer similarity solution specified at the inflow, and transition to turbulence is promoted with an artificial body force trip. The effects of spatial resolution in the range of ILES-NWR, conventional DNS, and very strict DNS are considered. The finest grid in the spatial resolution study consists of \(3.3 \times 10^{10}\) points, and maintains \(\max(\Delta x_1^+, \Delta x_2^+, \Delta x_3^+) \leq 1\) everywhere. With the resolution at the wall held at \((\Delta x_2^+)_w < 1,\) statistics characterizing large-scale flow features converge for \(\max(\Delta x_i^+) \leq 10\) and agree well with experimental data. Velocity spectra in the outer part of the boundary layer agree well at low wavenumber for all grids in this range of mesh spacing, and increasing resolution acts to fill out the high-wavenumber end of the spectrum. In all cases, the resolved region of the spectrum agrees well with a well-validated model of the spectrum of isotropic turbulence. Thus, ILES-NWR can be concluded to converge seamlessly to DNS as the spatial resolution is increased. The low-wavenumber aspect of spatial resolution is examined by varying the width of the computational domain, with a fixed level of small-scale resolution. The primary influence of increasing domain width is to capture additional spectral content in low spanwise wavenumbers; other statistics are found to be identical. Further, turbulence statistics are found to be essentially independent of the domain width for values between two and eight times the maximum boundary layer thickness. This work predicts computationally, for the first time, the full velocity spectrum in the outer part of the boundary layer. In doing so, it justifies the use of the ILES-NWR approach as long as the maximum grid spacing is less than 10 in inner units, and the domain width is at least two times the maximum boundary layer thickness.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F50 Compressibility effects in turbulence
76N20 Boundary-layer theory for compressible fluids and gas dynamics

Software:

MPI; FDL3DI
Full Text: DOI

References:

[1] Chapman, D. R., Computational aerodynamics development and outlook, AIAA J, 17, 12, 313-1293, (1979) · Zbl 0443.76060
[2] Pope, S. B., Turbulent flows, (2000), Cambridge University Press Cambridge, UK · Zbl 0966.76002
[3] Choi, H.; Moin, P., Grid-point requirements for large eddy simulation: chapman’s estimates revisited, Phys Fluids, 24, 011702, (2012)
[4] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dyn Res, 10, 4-6, 199-228, (1992)
[5] Visbal, M. R.; Rizzetta, D. P., Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes, J Fluids Eng, 124, 4, 47-836, (2002)
[6] Georgiadis, N. J.; Rizzetta, D. P.; Fureby, C., Large-eddy simulation: current capabilities, recommended practices, and future research, AIAA J, 48, 8, 84-1772, (2010)
[7] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu Rev Fluid Mech, 23, 39-601, (1991)
[8] Spina, E. F.; Smits, A. J.; Robinson, S. K., The physics of supersonic turbulent boundary layers, Annu Rev Fluid Mech, 26, 287-319, (1994)
[9] Smits, A. J.; Dussauge, J.-P., Turbulent shear layers in supersonic flow, (2006), Springer New York
[10] Gatski, T. B.; Bonnet, J.-P., Compressibility, turbulence and high speed flow, (2013), Elsevier Amsterdam
[11] Corrsin, S.; Kistler, A. K., Free-stream boundaries of turbulent flow, Technical Report, (1955), National Advisory Committee for Aeronautics
[12] Hussain, A. K.M. F., Coherent structures - reality and myth, Phys Fluids, 26, 10, 50-2816, (1983) · Zbl 0524.76066
[13] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J Fluid Mech, 30, 73-741, (1967) · Zbl 1461.76274
[14] Offen, G. R.; Kline, S. J., A proposed model of the bursting process in turbulent boundary layers, J Fluid Mech, 70, 28-209, (1975)
[15] Kovasznay, L. S.G.; Kibens, V.; Blackwelder, R. F., Large-scale motion in the intermittent region of a turbulent boundary layer, J Fluid Mech, 41, 283-325, (1970)
[16] Owen, F. K.; Horstman, C. C., On the structure of hypersonic turbulent boundary layers, J Fluid Mech, 53, 36-611, (1972)
[17] Spina, E. F.; Smits, A. J., Organized structures in a compressible, turbulent boundary layer, J Fluid Mechs, 182, 85-109, (1987)
[18] Spina, E. F.; Donovan, J. F.; Smits, A. J., On the structure of high-Reynolds-number supersonic turbulent boundary layers, J Fluid Mech, 222, 293-327, (1991)
[19] Smith, D. R.; Smits, A. J., Simultaneous measurement of velocity and temperature fluctuations in the boundary layer of a supersonic flow, Exp Thermal Fluid Sci, 7, 3, 9-221, (1993)
[20] Tichenor, N. R.; Humble, R. A.; Bowersox, R. D.W., Response of a hypersonic turbulent boundary layer to favorable pressure gradients, J Fluid Mech, 722, 187-213, (2013) · Zbl 1287.76026
[21] Beresh, S. J.; Henfling, J. F.; Spillers, R. W.; Pruett, B. O.M., Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer, Phys Fluids, 23, 075110, (2011)
[22] Smith, M. W.; Smits, A. J., Visualization of the structure of supersonic turbulent boundary layers, Exp Fluids, 18, 288-302, (1995)
[23] Poggie, J.; Erbland, P. J.; Smits, A. J.; Miles, R. B., Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering, Exp Fluids, 37, 54-438, (2004)
[24] Bradshaw, P., Compressible turbulent shear layers, Annu Rev Fluid Mech, 9, 33-52, (1977) · Zbl 0412.76049
[25] Morkovin, M. V., Méchanique de la turbulence, (Favre, A., Effects of compressibility on turbulent flows, (1962), CNRS Paris, France), 367-380
[26] van Driest, E. R., On the turbulent flow near a wall, J Aeronaut Sci, 23, 11-1007, (1956) · Zbl 0073.20802
[27] Smits, A. J.; Spina, E. F.; Alving, A. E.; Smith, R. W.; Fernando, E. M.; Donovan, J. F., A comparison of the turbulence structure of subsonic and supersonic boundary layers, Phys Fluids, 1, 11, 75-1865, (1989)
[28] Papamoschou, D., Evidence of shocklets in a counterflow supersonic shear layer, Phys Fluids, 7, 5-233, (1995)
[29] Coleman, G. N.; Kim, J.; Moser, R. D., A numerical study of turbulent supersonic isothermal-wall channel flow, J Fluid Mech, 305, 83-159, (1995) · Zbl 0960.76517
[30] Huang, P. G.; Coleman, G. N.; Bradshaw, P., Compressible turbulent channel flows: DNS results and modelling, J Fluid Mech, 305, 185-218, (1995) · Zbl 0857.76036
[31] Rai, M. M.; Gatski, T. B.; Erlebacher, G., Direct simulation of spatially evolving compressible turbulent boundary layers, AIAA Paper, (1995), American Institute of Aeronautics and Astronautics Reston, VA
[32] Guarini, S. E.; Moser, R. D.; Shariff, K.; Wray, A., Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.25, J Fluid Mech, 414, 1-33, (2000) · Zbl 0983.76039
[33] Maeder, T.; Adams, N. A.; Kleiser, L., Direct simulation of supersonic turbulent boundary layers by an extended temporal approach, J Fluid Mech, 429, 187-216, (2001) · Zbl 1007.76031
[34] Urbin, G.; Knight, D., Large-eddy simulation of a supersonic boundary layer using an unstructured grid, AIAA J, 39, 7, 95-1288, (2001)
[35] Stolz, S.; Adams, N. A., Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique, Phys Fluids, 15, 8, 412-2398, (2003) · Zbl 1186.76501
[36] Pirozzoli, S.; Grasso, F.; Gatski, T. B., Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at \(M = 2.25\), Phys Fluids, 16, 3, 45-530, (2004) · Zbl 1186.76423
[37] Rizzetta, D. P.; Visbal, M. R., Large-eddy simulation of supersonic boundary-layer flow by a high-order method, Int J Comput Fluid Dyn, 18, 1, 15-27, (2004) · Zbl 1063.76609
[38] Sagaut, P.; Garnier, E.; Tromeur, E.; Larchevêque, L.; Labourasse, E., Turbulent inflow conditions for large-eddy simulation of compressible wall-bounded flows, AIAA J, 42, 3, 77-469, (2004)
[39] Xu, S.; Martin, M. P., Assessment of inflow boundary conditions for compressible turbulent boundary layers, Phys Fluids, 16, 7, 39-2623, (2004) · Zbl 1186.76582
[40] Martín, M. P., Direct numerical simulation of hypersonic turbulent boundary layers. part 1: initialization and comparison with experiments, J Fluid Mech, 570, 64-347, (2007) · Zbl 1105.76031
[41] Pirozzoli, S.; Bernardini, M.; Grasso, F., Characterization of coherent vortical structures in a supersonic turbulent boundary layer, J Fluid Mech, 613, 31-205, (2008) · Zbl 1151.76513
[42] Ringuette, M. J.; Wu, M.; Martín, M. P., Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3, J Fluid Mech, 594, 59-69, (2008) · Zbl 1159.76342
[43] Duan, L.; Beekman, I.; Martín, M. P., Direct numerical simulation of hypersonic turbulent boundary layers. part 2: effect of wall temperature, J Fluid Mech, 655, 45-419, (2010) · Zbl 1197.76078
[44] Bernardini, M.; Pirozzoli, S., Wall pressure fluctuations beneath supersonic turbulent boundary layers, Phys Fluids, 23, 085102, (2011)
[45] Duan, L.; Beekman, I.; Martín, M. P., Direct numerical simulation of hypersonic turbulent boundary layers. part 3: effect of Mach number, J Fluid Mech, 672, 67-245, (2011) · Zbl 1225.76160
[46] Duan, L.; Beekman, I.; Martín, M. P., Direct numerical simulation of hypersonic turbulent boundary layers. part 4: effect of high enthalpy, J Fluid Mech, 684, 25-59, (2011) · Zbl 1241.76277
[47] Lagha, M.; Kim, J.; Eldredge, J. D.; Zhong, X., A numerical study of compressible turbulent boundary layers, Phys Fluids, 23, 015106, (2011)
[48] Pirozzoli, S.; Bernardini, M., Turbulence in supersonic boundary layers at moderate Reynolds number, J Fluid Mech, 688, 68-120, (2011) · Zbl 1241.76286
[49] Di Marco, A.; Camussi, R.; Bernardini, M.; Pirozzoli, S., Wall pressure coherence in supersonic turbulent boundary layers, J Fluid Mech, 732, 56-445, (2013) · Zbl 1294.76176
[50] Pirozzoli, S.; Bernardini, M., Probing high-Reynolds number effects in numerical boundary layers, Phys Fluids, 25, 021704, (2013)
[51] Lund, T. S.; Wu, X.; Squires, K. D., Generation of turbulent inflow data for spatially-developing boundary layer simulations, J Comput Phys, 140, 58-233, (1998) · Zbl 0936.76026
[52] Spina, E. F., Organized structures in a supersonic turbulent boundary layer, (1988), Princeton University Princeton NJ, [Ph.D. Dissertation]
[53] Ganapathisubramani, B.; Clemens, N. T.; Dolling, D. S., Large-scale motions in a supersonic turbulent boundary layer, J Fluid Mech, 556, 82-271, (2006) · Zbl 1093.76510
[54] Sternberg, N.; Poggie, J., Plasma-sheath transition in the magnetized plasma-wall problem for collisionless ions, IEEE Trans Plasma Sci, 32, 6, 26-2217, (2004)
[55] Poggie, J.; Sternberg, N., Transition from the constant ion mobility regime to the ion-atom charge-exchange regime for bounded collisional plasmas, Phys Plasmas, 12, 023502, (2005)
[56] Poggie, J., Numerical simulation of direct current glow discharges for high-speed flow control, J Propuls Power, 24, 5, 916-922, (2008)
[57] Poggie, J.; Adamovich, I.; Bisek, N.; Nishihara, M., Numerical simulation of nanosecond-pulse electrical discharges, Plasma Sources Sci Technol, 22, 015001, (2013)
[58] Poggie, J.; Bisek, N. J.; Leger, T.; Tang, R., Implicit large-eddy simulation of a supersonic turbulent boundary layer: code comparison, AIAA Paper, (2014), American Institute of Aeronautics and Astronautics Reston, VA
[59] Poggie, J., Large-scale structures in implicit large-eddy simulation of compressible turbulent flow, AIAA Paper, (2014), American Institute of Aeronautics and Astronautics Reston, VA
[60] White, F. M., Viscous Fluid Flow, (1991), McGraw-Hill New York
[61] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J Comput Phys, 181, 85-155, (2002) · Zbl 1008.65062
[62] Visbal, M. R.; Gaitonde, D. V., Shock capturing using compact-differencing-based methods, AIAA Paper, (2005), American Institute of Aeronautics and Astronautics Reston, VA
[63] Pirozzoli, S., Numerical methods for high-speed flows, Annu Rev Fluid Mech, 43, 94-163, (2011) · Zbl 1299.76103
[64] Beam, R.; Warming, R., An implicit factored scheme for the compressible Navier-Stokes equations, AIAA J, 16, 4, 393-402, (1978) · Zbl 0374.76025
[65] Pulliam, T. H., Implicit finite-difference simulations of three-dimensional compressible flow, AIAA J, 18, 2, 67-159, (1980) · Zbl 0417.76039
[66] Hoffmann, K. A.; Chiang, S. T., Computational Fluid Dynamics, (2000), Engineering Educational System Wichita KS
[67] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J, 17, 10, 37-1030, (1979) · Zbl 0436.76025
[68] Pulliam, T. H.; Chaussee, D. S., A diagonal form of an implicit approximate-factorization algorithm, J Comput Phys, 39, 63-347, (1981) · Zbl 0472.76068
[69] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J Comput Phys, 103, 16-42, (1992) · Zbl 0759.65006
[70] Gaitonde, D. V.; Visbal, M. R., High-order schemes for Navier-Stokes equations: algorithm implementation into FDL3DI, Technical Report, (1998), Air Force Research Laboratory Wright-Patterson Air Force Base, Ohio
[71] Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R., Parallel programming in openMP, (2001), Academic Press San Diego
[72] Gropp, W.; Lusk, E.; Skjellum, A., Using MPI: portable parallel programming with the message-passing interface, (1999), The MIT Press Cambridge, MA
[73] Poggie, J., Control of shock-wave/boundary-layer interaction using volumetric energy deposition, AIAA Paper, (2008), American Institute of Aeronautics and Astronautics Reston VA
[74] Bisek, N. J.; Rizzetta, D. P.; Poggie, J., Plasma control of a turbulent shock boundary-layer interaction, AIAA J, 51, 8, 804-1789, (2013)
[75] Mullenix, N. J.; Gaitonde, D. V.; Visbal, M. R., Spatially developing supersonic turbulent boundary layer with a body-force based method, AIAA J, 51, 8, 19-1805, (2013)
[76] Bendat, J. S.; Piersol, A. G., Random data: analysis and measurement procedures, (1986), J. Wiley New York · Zbl 0662.62002
[77] Smith, D. R.; Poggie, J.; Konrad, W.; Smits, A. J., Visualization of the structure of shock wave turbulent boundary layer interactions using Rayleigh scattering, AIAA Paper, (1991), American Institute of Aeronautics and Astronautics Reston, VA
[78] Alving, A. E., Boundary layer relaxation from convex curvature, (1988), Princeton University Princeton NJ, [Ph.D. dissertation]
[79] Éléna, M.; Lacharme, J. P., Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer, J Mécanique Théorique et Appliquée, 7, 90-175, (1988)
[80] Konrad, W., A three-dimensional supersonic turbulent boundary layer generated by an isentropic compression, (1993), Princeton University Princeton NJ, [Ph.D. Dissertation]
[81] Poggie, J., Quantitative flow visualization applied to the study of compressible turbulent flow, (1991), Princeton University, Master’s thesis
[82] Selig, M. S.; Andreopoulos, J.; Muck, K. C.; Dussauge, J. P.; Smits, A. J., Turbulence structure in a shock wave / turbulent boundary-layer interaction, AIAA J, 27, 7, 9-862, (1989)
[83] Sreenivasan, K. R.; Ramshankar, R.; Meneveau, C., Mixing, entrainment and fractal dimensions of surfaces in turbulent flows, Proc R Soc Lond A, 421, 1860, 79-108, (1989) · Zbl 0674.76039
[84] Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, J Fluid Mech, 268, 72-333, (1994)
[85] Poggie, J.; Bisek, N. J.; Kimmel, R. L.; Stanfield, S. A., Spectral characteristics of separation shock unsteadiness, AIAA J, 53, 1, 14-200, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.