×

Modular representations of \(GL(n,p)\), splitting \(\Sigma(CP^{\infty} \times \dots \times CP^{\infty})\) and the \(\beta\)-family as framed hypersurfaces. (English) Zbl 0536.55006

The main result is that the elements \(\beta_ 1,\beta_ 2,...,\beta_{p-2}\) and \(\beta_ p\) in the \(p\)-primary component of the stable homotopy groups of spheres can be represented by framed hypersurfaces. The method relies on results of K. Knapp, which provide preimages for the \(\beta_ i\) under the double complex transfer \(Q\Sigma^ 2(CP^{\infty}\times CP^{\infty})\to Q\Sigma CP^{\infty}\to QS^ 0\) in terms of elements \(x_ 0\), \(x_ 1\) in the stable homotopy of \(CP^{\infty}\times CP^{\infty}\). The main technical tool is a decomposition of the \(p\)-local homotopy type of \(\Sigma(CP^{\infty}\times CP^{\infty})\) as a wedge of \(p(p^ 2-1)/2\) complexes. This enables \(x_ 0\) to be realised unstably in \(\Sigma(CP^{\infty}\times CP^{\infty})\), and \(x_ i\) in \(\Sigma^ p(CP^{\infty}\times CP^{\infty})\). The decomposition is achieved by analysing the action of \(GL(2,p)\) on the \({\mathbb{F}}_ p\)-cohomology of \(CP^{\infty}\times CP^{\infty}\) using modular representation theory.

MSC:

55Q45 Stable homotopy of spheres
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology
57R90 Other types of cobordism
55P42 Stable homotopy theory, spectra
20C20 Modular representations and characters

References:

[1] Adams, J.F.: On the groupsJ(X): IV. Topology5, 21-71 (1966) · Zbl 0145.19902 · doi:10.1016/0040-9383(66)90004-8
[2] Baker, A., Clarke, F., Ray, N., Schwartz, L.: Kummer congruences and the stable homotopy ofBU. In preparation · Zbl 0709.55012
[3] Baker, A., Ray, N.: Some infinite families ofU hypersurfaces. Math. Scand.50, 149-166 (1982) · Zbl 0513.57017
[4] Cohen, F.: Splitting certain suspension via self-maps. Ill. J. Math.20, 336-347 (1976) · Zbl 0316.55008
[5] Cooke, G.: Embedding certain complexes up to homotopy type in euclidean space. Ann. of Math.90, 144-156 (1969) · Zbl 0194.24804 · doi:10.2307/1970685
[6] Cooke, G., Smith, L.: Modp decompositions of coH-spaces and applications. Math. Z.157, 155-177 (1977) · Zbl 0386.55013 · doi:10.1007/BF01215149
[7] Curtis, M., Reiner, I.: Representations of finite groups and associative algebras. New York: Interscience 1962 · Zbl 0131.25601
[8] Eccles, P.J.: Filtering framed bordism by embedding codimension. J. London Math. Soc. (2),19, 163-169 (1979) · doi:10.1112/jlms/s2-19.1.163
[9] Eccles, P.J., Walker, G.: The elements? 1 are representable as framed hypersurfaces. J. Lon. Math. Soc.22, 153-160 (1980) · Zbl 0427.55011 · doi:10.1112/jlms/s2-22.1.153
[10] Glover, D.J.: A study of certain modular representations. J. Algebra51, 425-475 (1978) · Zbl 0376.20008 · doi:10.1016/0021-8693(78)90116-3
[11] Kahn, D.S., Priddy, S.B.: Applications of the transfer to stable homotopy theory. Bull. Am. Math. Soc.78, 981-987 (1972) · Zbl 0265.55009 · doi:10.1090/S0002-9904-1972-13076-3
[12] Knapp, K.: Some applications ofK-theory to framed bordism:e-invariant and transfer. Habilitationsschrift, Univ. Bonn (1979)
[13] Mahowald, M.E.: The order of the image of theJ-homomorphism. Bull. Am. Math. Soc.76, 1310-1313 (1970) · Zbl 0212.28401 · doi:10.1090/S0002-9904-1970-12656-8
[14] McGibbon, C.A.: Stable properties of rank 1 loop structures. Topology20, 109-118 (1981) · Zbl 0453.55005 · doi:10.1016/0040-9383(81)90031-8
[15] Miller, H.R., Ravenel, D.C., Wilson, W.S.: Periodic phenomena in the Adams-Novikov spectral sequence. Ann. of Math.106, 469-516 (1977) · Zbl 0374.55022 · doi:10.2307/1971064
[16] Mimura, M., Nishida, G., Toda, H.: Modp decomposition of compact Lie groups. Pub. RIMS. Kyoto Univ.13, 627-680 (1977) · Zbl 0383.22007 · doi:10.2977/prims/1195189602
[17] Mitchell, S.A., Priddy, S.B.: Stable splittings derived from the Steinberg module. Topology22, 285-298 (1983) · Zbl 0526.55010 · doi:10.1016/0040-9383(83)90014-9
[18] Ossa, E.: Lie groups as framed manifolds. Topology21, 315-324 (1982) · Zbl 0491.55008 · doi:10.1016/0040-9383(82)90013-1
[19] Ray, N., Schwartz, L.: Embedding certain complexes via unstable homotopy theory. AMS Contemp. Math.19, 331-338 (1983) · Zbl 0518.55011
[20] Rees, E.: Framings on hypersurfaces. J. Lond. Math. Soc.22, 161-167 (1980) · doi:10.1112/jlms/s2-22.1.161
[21] Smith, L.: On realizing complex bordism modules. Amer. J. Math.92, 793-856 (1970) · Zbl 0218.55023 · doi:10.2307/2373397
[22] Stolz, S.: Beziehungen zwischen Transfer undJ-Homomorphismus. Diplomarbeit, Univ. Bonn (1979)
[23] Schwartz, L.: Opérations d’Adams enK-homologie. Bull. Soc. Math. France109, 237-257 (1981) · Zbl 0472.55013
[24] Toda, H.:p primary components of homotopy groups IV. Mem. Coll. Sci. Univ. Kyoto,32, 297-332 (1959) · Zbl 0095.16802
[25] Whitehead, G.W.: Elements of homotopy theory. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.