Nathanan Tantivasadakarn

Nathanan Tantivasadakarnnathanan-tantivasadakarn

Oct 23 2024 07:53 UTC

Ah yes, we're slightly abusing notation there. If a basis of chains is chosen (in this case simplices) then one can define a basis of dual cochains for each simplex which is a kronecker delta on that simplex.
So Eq.3 means that the cup product of the function that is only non-zero on [ab] and the function that is only non-zero on [bc] is the function that is only non-zero on [abc].
The way the cup product acts actually depends on a choice of orientation (also called branching structure), so it's actually not unique. The important thing though is that regardless of this choice, it descends to an operation in cohomology.

Oct 23 2024 06:41 UTC

f acts on p things, while δf acts on p+1 things, so it is correct. We're defining the coboundary in terms of its action on chains. We're not mapping a function acting on p+1 things to something that acts on p things.

Oct 23 2024 02:00 UTC
We take initial steps towards a general framework for constructing logical gates in general quantum CSS codes. Viewing CSS codes as cochain complexes, we observe that cohomology invariants naturally give rise to diagonal logical gates. We show that such invariants exist if the quantum code has a structure that relaxes certain properties of a differential graded algebra. We show how to equip quantum codes with such a structure by defining cup products on CSS codes. The logical gates obtained from this approach can be implemented by a constant-depth unitary circuit. In particular, we construct a $\Lambda$-fold cup product that can produce a logical operator in the $\Lambda$-th level of the Clifford hierarchy on $\Lambda$ copies of the same quantum code, which we call the copy-cup gate. For any desired $\Lambda$, we can construct several families of quantum codes that support gates in the $\Lambda$-th level with various asymptotic code parameters.
Jun 21 2024 02:00 UTC
Tensor networks provide a natural language for non-invertible symmetries in general Hamiltonian lattice models. We use ZX-diagrams, which are tensor network presentations of quantum circuits, to define a non-invertible operator implementing the Wegner duality in 3+1d lattice $\mathbb{Z}_2$ gauge theory. The non-invertible algebra, which mixes with lattice translations, can be efficiently computed using ZX-calculus. We further deform the $\mathbb{Z}_2$ gauge theory while preserving the duality and find a model with nine exactly degenerate ground states on a torus, consistent with the Lieb-Schultz-Mattis-type constraint imposed by the symmetry. Finally, we provide a ZX-diagram presentation of the non-invertible duality operators (including non-invertible parity/reflection symmetries) of generalized Ising models based on graphs, encompassing the 1+1d Ising model, the three-spin Ising model, the Ashkin-Teller model, and the 2+1d plaquette Ising model. The mixing (or lack thereof) with spatial symmetries is understood from a unifying perspective based on graph theory.
Dec 18 2023 02:00 UTC
Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a $G\times \text{Rep}(G)$-symmetric state: the $G \textit{ cluster state}$ introduced in Brell, New Journal of Physics 17, 023029 (2015) [at http://doi.org/10.1088/1367-2630/17/2/023029]. We show that this state lies in a symmetry-protected topological (SPT) phase protected by $G\times \text{Rep}(G)$ symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely protected edge modes, string order parameters, and topological response. We discuss how $G$ cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where $G$ is a semidirect product of abelian groups.
Dec 15 2023 02:00 UTC
Nathanan Tantivasadakarn published Fracton models from product codes
We explore a deep connection between fracton order and product codes. In particular, we propose and analyze conditions on classical seed codes which lead to fracton order in the resulting quantum product codes. Depending on the properties of the input codes, product codes can realize either Type-I or Type-II fracton models, in both nonlocal and local constructions. For the nonlocal case, we show that a recently proposed model of lineons on an irregular graph can be obtained as a hypergraph product code. Interestingly, constrained mobility in this model arises only from glassiness associated with the graph. For the local case, we introduce a novel type of classical LDPC code defined on a planar aperiodic tiling. By considering the specific example of the pinwheel tiling, we demonstrate the systematic construction of local Type-I and Type-II fracton models as product codes. Our work establishes product codes as a natural setting for exploring fracton order.
Dec 11 2023 02:00 UTC
Nathanan Tantivasadakarn published A holographic view of topological stabilizer codes
The bulk-boundary correspondence is a hallmark feature of topological phases of matter. Nonetheless, our understanding of the correspondence remains incomplete for phases with intrinsic topological order, and is nearly entirely lacking for more exotic phases, such as fractons. Intriguingly, for the former, recent work suggests that bulk topological order manifests in a non-local structure in the boundary Hilbert space; however, a concrete understanding of how and where this perspective applies remains limited. Here, we provide an explicit and general framework for understanding the bulk-boundary correspondence in Pauli topological stabilizer codes. We show -- for any boundary termination of any two-dimensional topological stabilizer code -- that the boundary Hilbert space cannot be realized via local degrees of freedom, in a manner precisely determined by the anyon data of the bulk topological order. We provide a simple method to compute this "obstruction" using a well-known mapping to polynomials over finite fields. Leveraging this mapping, we generalize our framework to fracton models in three-dimensions, including both the X-Cube model and Haah's code. An important consequence of our results is that the boundaries of topological phases can exhibit emergent symmetries that are impossible to otherwise achieve without an unrealistic degree of fine tuning. For instance, we show how linear and fractal subsystem symmetries naturally arise at the boundaries of fracton phases.
Dec 01 2023 02:00 UTC
The CSS code construction is a powerful framework used to express features of a quantum code in terms of a pair of underlying classical codes. Its subsystem extension allows for similar expressions, but the general case has not been fully explored. Extending previous work of Aly, Klappenecker, and Sarvepalli [quantph/0610153], we determine subsystem CSS code parameters, express codewords, and develop a Steane-type decoder using only data from the two underlying classical codes. Generalizing a result of Kovalev and Pryadko [Phys. Rev. A 88 012311 (2013)], we show that any subsystem stabilizer code can be "doubled" to yield a subsystem CSS code with twice the number of physical, logical, and gauge qudits and up to twice the code distance. This mapping preserves locality and is tighter than the Majorana-based mapping of Bravyi, Terhal, and Leemhuis [New J. Phys. 12 083039 (2010)]. Using Goursat's Lemma, we show that every subsystem stabilizer code can be constructed from two nested subsystem CSS codes satisfying certain constraints, and we characterize subsystem stabilizer codes based on the nested codes' properties.
Sep 07 2023 02:00 UTC
Preparing quantum states across many qubits is necessary to unlock the full potential of quantum computers. However, a key challenge is to realize efficient preparation protocols which are stable to noise and gate imperfections. Here, using a measurement-based protocol on a 127 superconducting qubit device, we study the generation of the simplest long-range order -- Ising order, familiar from Greenberger-Horne-Zeilinger (GHZ) states and the repetition code -- on 54 system qubits. Our efficient implementation of the constant-depth protocol and classical decoder shows higher fidelities for GHZ states compared to size-dependent, unitary protocols. By experimentally tuning coherent and incoherent error rates, we demonstrate stability of this decoded long-range order in two spatial dimensions, up to a critical point which corresponds to a transition belonging to the unusual Nishimori universality class. Although in classical systems Nishimori physics requires fine-tuning multiple parameters, here it arises as a direct result of the Born rule for measurement probabilities -- locking the effective temperature and disorder driving this transition. Our study exemplifies how measurement-based state preparation can be meaningfully explored on quantum processors beyond a hundred qubits.
Jul 26 2023 02:00 UTC
Nathanan Tantivasadakarn published Engineering 3D Floquet codes by rewinding
Floquet codes are a novel class of quantum error-correcting codes with dynamically generated logical qubits arising from a periodic schedule of non-commuting measurements. We utilize the interpretation of measurements in terms of condensation of topological excitations and the rewinding of measurement sequences to engineer new examples of Floquet codes. In particular, rewinding is advantageous for obtaining a desired set of instantaneous stabilizer groups on both toric and planar layouts. Our first example is a Floquet code with instantaneous stabilizer codes that have the same topological order as 3D toric code(s). This Floquet code also exhibits a splitting of the topological order of the 3D toric code under the associated sequence of measurements, i.e., an instantaneous stabilizer group of a single copy of 3D toric code in one round transforms into an instantaneous stabilizer group of two copies of 3D toric codes up to nonlocal stabilizers in the following round. We further construct boundaries for this 3D code and argue that stacking it with two copies of 3D subsystem toric code allows for a transversal implementation of the logical non-Clifford $CCZ$ gate. We also show that the coupled-layer construction of the X-cube Floquet code can be modified by a rewinding schedule such that each of the instantaneous stabilizer codes is finite-depth-equivalent to the X-cube model up to toric codes; the X-cube Floquet code exhibits a splitting of the X-cube model into a copy of the X-cube model and toric codes under the measurement sequence. Our final 3D example is a generalization of the 2D Floquet toric code on the honeycomb lattice to 3D, which has instantaneous stabilizer codes with the same topological order as the 3D fermionic toric code.
Jul 21 2023 02:00 UTC
Nathanan Tantivasadakarn published Quantum computation from dynamic automorphism codes
We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack of $N$ triangular patches, the DA color code encodes $N$ logical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.
Jul 07 2023 02:00 UTC
Elementary point charge excitations in 3+1D topological phases can condense along a line and form a descendant excitation called the Cheshire string. Unlike the elementary flux loop excitations in the system, Cheshire strings do not have to appear as the boundary of a 2d disc and can exist on open line segments. On the other hand, Cheshire strings are different from trivial excitations that can be created with local unitaries in 0d and finite depth quantum circuits in 1d and higher. In this paper, we show that to create a Cheshire string, one needs a linear depth circuit that acts sequentially along the length of the string. Once a Cheshire string is created, its deformation, movement and fusion can be realized by finite depths circuits. This circuit depth requirement applies to all nontrivial descendant excitations including symmetry-protected topological chains and the Majorana chain.
Jul 06 2023 02:00 UTC
Finite-depth quantum circuits preserve the long-range entanglement structure in quantum states and map between states within a gapped phase. To map between states of different gapped phases, we can use Sequential Quantum Circuits which apply unitary transformations to local patches, strips, or other sub-regions of a system in a sequential way. The sequential structure of the circuit on the one hand preserves entanglement area law and hence the gapped-ness of the quantum states. On the other hand, the circuit has generically a linear depth, hence it is capable of changing the long-range correlation and entanglement of quantum states and the phase they belong to. In this paper, we discuss systematically the definition, basic properties, and prototypical examples of sequential quantum circuits that map product states to GHZ states, symmetry-protected topological states, intrinsic topological states, and fracton states. We discuss the physical interpretation of the power of the circuits through connection to condensation, Kramers-Wannier duality, and the notion of foliation for fracton phases.
May 22 2023 02:00 UTC
The Kitaev honeycomb model, which is exactly solvable by virtue of an extensive number of conserved quantities, supports a gapless quantum spin liquid phase as well as gapped descendants relevant for fault-tolerant quantum computation. We show that the anomalous edge modes of 1D cluster-state-like symmetry protected topological (SPT) phases provide natural building blocks for a variant of the Kitaev model that enjoys only a subextensive number of conserved quantities. The symmetry of our variant allows a single additional nearest-neighbor perturbation, corresponding to an anisotropic version of the $\Gamma$ term studied in the context of Kitaev materials. We determine the phase diagram of the model using exact diagonalization. Additionally, we use DMRG to show that the underlying 1D SPT building blocks can emerge from a ladder Hamiltonian exhibiting only two-spin interactions supplemented by a Zeeman field. Our approach may inform a new pathway toward realizing Kitaev honeycomb spin liquids in spin-orbit-coupled Mott insulators.
May 09 2023 02:00 UTC
Non-Abelian topological order (TO) is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged. These anyonic excitations are promising building blocks of fault-tolerant quantum computers. However, despite extensive efforts, non-Abelian TO and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian TO. In this work, we present the first unambiguous realization of non-Abelian TO and demonstrate control of its anyons. Using an adaptive circuit on Quantinuum's H2 trapped-ion quantum processor, we create the ground state wavefunction of $D_4$ TO on a kagome lattice of 27 qubits, with fidelity per site exceeding $98.4\%$. By creating and moving anyons along Borromean rings in spacetime, anyon interferometry detects an intrinsically non-Abelian braiding process. Furthermore, tunneling non-Abelions around a torus creates all 22 ground states, as well as an excited state with a single anyon -- a peculiar feature of non-Abelian TO. This work illustrates the counterintuitive nature of non-Abelions and enables their study in quantum devices.
Apr 04 2023 02:00 UTC
Nathanan Tantivasadakarn published Fracton Self-Statistics
Fracton order describes novel quantum phases of matter that host quasiparticles with restricted mobility, and thus lies beyond the existing paradigm of topological order. In particular, excitations that cannot move without creating multiple excitations are called fractons. Here we address a fundamental open question -- can the notion of self-exchange statistics be naturally defined for fractons, given their complete immobility as isolated excitations? Surprisingly, we demonstrate how fractons can be exchanged, and show that their self-statistics is a key part of the characterization of fracton orders. We derive general constraints satisfied by the fracton self-statistics in a large class of Abelian fracton orders. Finally, we show the existence of nontrivial fracton self-statistics in some twisted variants of the checkerboard model and Haah's code, establishing that these models are in distinct quantum phases as compared to their untwisted cousins.
Apr 03 2023 02:00 UTC
Monitored quantum circuits allow for unprecedented dynamical control of many-body entanglement. Here we show that random, measurement-only circuits, implementing the competition of bond and plaquette couplings of the Kitaev honeycomb model, give rise to a structured volume-law entangled phase with subleading $L \ln L$ liquid scaling behavior. This interacting Majorana liquid takes up a highly-symmetric, spherical parameter space within the entanglement phase diagram obtained when varying the relative coupling probabilities. The sphere itself is a critical boundary with quantum Lifshitz scaling separating the volume-law phase from proximate area-law phases, a color code or a toric code. An exception is a set of tricritical, self-dual points exhibiting effective (1+1)d conformal scaling at which the volume-law phase and both area-law phases meet. From a quantum information perspective, our results define error thresholds for the color code in the presence of projective error and stochastic syndrome measurements. We show that an alternative realization of our model circuit can be implemented using unitary gates plus ancillary single-qubit measurements only.
Feb 06 2023 02:00 UTC
Quantum systems evolve in time in one of two ways: through the Schrödinger equation or wavefunction collapse. So far, deterministic control of quantum many-body systems in the lab has focused on the former, due to the probabilistic nature of measurements. This imposes serious limitations: preparing long-range entangled states, for example, requires extensive circuit depth if restricted to unitary dynamics. In this work, we use mid-circuit measurement and feed-forward to implement deterministic non-unitary dynamics on Quantinuum's H1 programmable ion-trap quantum computer. Enabled by these capabilities, we demonstrate for the first time a constant-depth procedure for creating a toric code ground state in real-time. In addition to reaching high stabilizer fidelities, we create a non-Abelian defect whose presence is confirmed by transmuting anyons via braiding. This work clears the way towards creating complex topological orders in the lab and exploring deterministic non-unitary dynamics via measurement and feed-forward.
Dec 21 2022 02:00 UTC
We study the boundary states of the archetypal three-dimensional topological order, i.e. the three-dimensional $\mathbb{Z}_2$ toric code. There are three distinct elementary types of boundary states that we will consider in this work. In the phase diagram that includes the three elementary boundaries there may exist a multi-critical point, which is captured by the so-called deconfined quantum critical point (DQCP) with an "easy-axis" anisotropy. Moreover, there is an emergent $\mathbb{Z}_{2,\text{d}}$ symmetry that swaps two of the boundary types, and it becomes part of the global symmetry of the DQCP. The emergent $\mathbb{Z}_{2,\text{d}}$ symmetry on the boundary is originated from a type of surface defect in the bulk. We further find a gapped boundary with a surface topological order that is invariant under the emergent symmetry.
Nov 09 2022 02:00 UTC
We construct Pauli topological subsystem codes characterized by arbitrary two-dimensional Abelian anyon theories--this includes anyon theories with degenerate braiding relations and those without a gapped boundary to the vacuum. Our work both extends the classification of two-dimensional Pauli topological subsystem codes to systems of composite-dimensional qudits and establishes that the classification is at least as rich as that of Abelian anyon theories. We exemplify the construction with topological subsystem codes defined on four-dimensional qudits based on the $\mathbb{Z}_4^{(1)}$ anyon theory with degenerate braiding relations and the chiral semion theory--both of which cannot be captured by topological stabilizer codes. The construction proceeds by "gauging out" certain anyon types of a topological stabilizer code. This amounts to defining a gauge group generated by the stabilizer group of the topological stabilizer code and a set of anyonic string operators for the anyon types that are gauged out. The resulting topological subsystem code is characterized by an anyon theory containing a proper subset of the anyons of the topological stabilizer code. We thereby show that every Abelian anyon theory is a subtheory of a stack of toric codes and a certain family of twisted quantum doubles that generalize the double semion anyon theory. We further prove a number of general statements about the logical operators of translation invariant topological subsystem codes and define their associated anyon theories in terms of higher-form symmetries.
Oct 07 2022 02:00 UTC
Nathanan Tantivasadakarn published Floquet codes without parent subsystem codes
We propose a new class of error-correcting dynamic codes in two and three dimensions that has no explicit connection to any parent subsystem code. The two-dimensional code, which we call the CSS honeycomb code, is geometrically similar to that of the honeycomb code by Hastings and Haah, and also dynamically embeds an instantaneous toric code. However, unlike the honeycomb code it possesses an explicit CSS structure and its gauge checks do not form a subsystem code. Nevertheless, we show that our dynamic protocol conserves logical information and possesses a threshold for error correction. We generalize this construction to three dimensions and obtain a code that fault-tolerantly alternates between realizing two type-I fracton models, the checkerboard and the X-cube model. Finally, we show the compatibility of our CSS honeycomb code protocol and the honeycomb code by showing the possibility of randomly switching between the two protocols without information loss while still measuring error syndromes. We call this more general aperiodic structure `dynamic tree codes', which we also generalize to three dimensions. We construct a probabilistic finite automaton prescription that generates dynamic tree codes correcting any single-qubit Pauli errors and can be viewed as a step towards the development of practical fault-tolerant random codes.
Sep 14 2022 02:00 UTC
Long-range entanglement--the backbone of topologically ordered states--cannot be created in finite time using local unitary circuits, or equivalently, adiabatic state preparation. Recently it has come to light that single-site measurements provide a loophole, allowing for finite-time state preparation in certain cases. Here we show how this observation imposes a complexity hierarchy on long-range entangled states based on the minimal number of measurement layers required to create the state, which we call "shots". First, similar to Abelian stabilizer states, we construct single-shot protocols for creating any non-Abelian quantum double of a group with nilpotency class two (such as $D_4$ or $Q_8$). We show that after the measurement, the wavefunction always collapses into the desired non-Abelian topological order, conditional on recording the measurement outcome. Moreover, the clean quantum double ground state can be deterministically prepared via feedforward--gates which depend on the measurement outcomes. Second, we provide the first constructive proof that a finite number of shots can implement the Kramers-Wannier duality transformation (i.e., the gauging map) for any solvable symmetry group. As a special case, this gives an explicit protocol to prepare twisted quantum double for all solvable groups. Third, we argue that certain topological orders, such as non-solvable quantum doubles or Fibonacci anyons, define non-trivial phases of matter under the equivalence class of finite-depth unitaries and measurement, which cannot be prepared by any finite number of shots. Moreover, we explore the consequences of allowing gates to have exponentially small tails, which enables, for example, the preparation of any Abelian anyon theory, including chiral ones. This hierarchy paints a new picture of the landscape of long-range entangled states, with practical implications for quantum simulators.
Sep 12 2022 02:00 UTC
A highly coveted goal is to realize emergent non-Abelian gauge theories and their anyonic excitations, which encode decoherence-free quantum information. While measurements in quantum devices provide new hope for scalably preparing such long-range entangled states, existing protocols using the experimentally established ingredients of a finite-depth circuit and a single round of measurement produce only Abelian states. Surprisingly, we show there exists a broad family of non-Abelian states -- namely those with a Lagrangian subgroup -- which can be created using these same minimal ingredients, bypassing the need for new resources such as feed-forward. To illustrate that this provides realistic protocols, we show how $D_4$ non-Abelian topological order can be realized, e.g., on Google's quantum processors using a depth-11 circuit and a single layer of measurements. Our work opens the way towards the realization and manipulation of non-Abelian topological orders, and highlights counter-intuitive features of the complexity of non-Abelian phases.
Aug 25 2022 02:00 UTC
In the field of monitored quantum circuits, it has remained an open question whether finite-time protocols for preparing long-range entangled states lead to phases of matter which are stable to gate imperfections, which can convert projective into weak measurements. Here we show that in certain cases, long-range entanglement persists in the presence of weak measurements, and gives rise to novel forms of quantum criticality. We demonstrate this explicitly for preparing the two-dimensional Greenberger-Horne-Zeilinger cat state and the three-dimensional toric code as minimal instances. In contrast to the monitored random unitary circuits, In contrast to random monitored circuits, our circuit of gates and measurements is deterministic; the only randomness is in the measurement outcomes. We show how the randomness in these weak measurements allows us to track the solvable Nishimori line of the random-bond Ising model, rigorously establishing the stability of the glassy long-range entangled states in two and three spatial dimensions. Away from this exactly solvable construction, we use hybrid tensor network and Monte Carlo simulations to obtain a nonzero Edwards-Anderson order parameter as an indicator of long-range entanglement in the two-dimensional scenario. We argue that our protocol admits a natural implementation in existing quantum computing architectures, requiring only a depth-3 circuit on IBM's heavy-hexagon transmon chips.
Aug 16 2022 02:00 UTC
(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of $\mathbb{Z}_2$ gauge theory with fermionic charges, in $\mathbb{Z}_2 \times \mathbb{Z}_2$ gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ($D_n$) and alternating ($A_6$) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an $H^4$ cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D $A_6$ gauge theory.