About: Holonomy

An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

Property Value
dbo:abstract
  • En geometria diferencial, l'holonomia d'una connexió d'una varietat suau és en general una conseqüència geomètrica de la curvatura de la connexió, que mesura com el transport paral·lel al voltant de llaços tancats no preserva les dades geomètriques que es transporten. Per a connexions planes, l'holonomia associada és un tipus de monodromia, i és un concepte inherentment global. Per a les connexions de corbes, l'holonomia té característiques locals i globals no trivials. (ca)
  • Der mathematische Begriff der Holonomiegruppe eines Zusammenhangs eines Vektor- oder Hauptfaserbündels über einer differenzierbaren Mannigfaltigkeit (abgekürzt auch einfach Holonomie) bezeichnet in der Differentialgeometrie die Gruppe linearer Transformationen, die durch den Paralleltransport von Vektoren entlang geschlossener Kurven induziert wird.Trägt eine Mannigfaltigkeit eine riemannsche Metrik, so ist deren riemannsche Holonomie durch die Holonomie des Levi-Civita-Zusammenhangs auf dem Tangentialbündel von gegeben. (de)
  • In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civita connection in Riemannian geometry (called Riemannian holonomy), holonomy of connections in vector bundles, holonomy of Cartan connections, and holonomy of connections in principal bundles. In each of these cases, the holonomy of the connection can be identified with a Lie group, the holonomy group. The holonomy of a connection is closely related to the curvature of the connection, via the . The study of Riemannian holonomy has led to a number of important developments. Holonomy was introduced by Élie Cartan in order to study and classify symmetric spaces. It was not until much later that holonomy groups would be used to study Riemannian geometry in a more general setting. In 1952 Georges de Rham proved the de Rham decomposition theorem, a principle for splitting a Riemannian manifold into a Cartesian product of Riemannian manifolds by splitting the tangent bundle into irreducible spaces under the action of the local holonomy groups. Later, in 1953, Marcel Berger classified the possible irreducible holonomies. The decomposition and classification of Riemannian holonomy has applications to physics and to string theory. (en)
  • En geometría diferencial, la holonomía de una conexión de una variedad suave es en general una consecuencia geométrica de la curvatura de la conexión, que mide como el transporte paralelo alrededor de lazos cerrados no preserva los datos geométricos que se transportan. Para conexiones planas, la holonomía asociada es un tipo de monodromía, y es un concepto inherentemente global. Para las conexiones de curvas, holonomía tiene características locales y globales no triviales. Cualquier tipo de conexión en una variedad da lugar, a través de sus mapas de transporte paralelo, en cierta noción de holonomía. Las formas más comunes de holonomía son las conexiones que poseen algún tipo de simetría.​​ Ejemplos importantes son: holonomía de la conexión de Levi-Civita en la geometría de Riemann, holonomía de conexiones en fibrados vectoriales, holonomía de conexiones de Cartan y holonomía de conexiones en fibrados principales. En cada uno de estos casos, la holonomía de la conexión puede ser identificada con un grupo de Lie, el grupo holonomía. la holonomía de una conexión está estrechamente relacionada con la curvatura de la conexión, a través del teorema de Ambrose-Singer. El estudio de holonomía Riemann ha dado lugar a una serie de acontecimientos importantes. La holonomía fue introducida por Cartan para estudiar y clasificar los espacios simétricos. No fue hasta mucho más tarde que los grupos holonomía se utilizarían para estudiar la geometría de Riemann en un contexto más general. En 1952 Georges de Rham demostró el teorema de descomposición de Rham, un principio de la división de una variedad de Riemann en un producto cartesiano de variedades de Riemann, dividiendo el fibrado tangente en espacios irreducibles bajo la acción de los grupos de holonomía locales. Más tarde, en 1953, M. Berger clasifica las posibles holonomias irreductibles. La descomposición y la clasificación de holonomía Riemann tiene aplicaciones a la física, y en particular a la teoría de cuerdas. (es)
  • En mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale. Pour des connexions de courbure non nulle, l'holonomie a des aspects locaux et globaux non triviaux. Toute connexion sur une variété donne naissance, grâce aux applications de transport parallèle, à une notion d'holonomie. Parmi les exemples importants, on trouve : l'holonomie de la connexion de Levi-Civita (appelée holonomie riemannienne), les holonomies des connexions des fibrés vectoriels, l'holonomie des (en), et l'holonomie des connexions des fibrés principaux. Dans chacun de ces cas, l'holonomie de la connexion peut s'identifier à un groupe de Lie, le groupe d'holonomie. L'holonomie d'une connexion est étroitement liée à sa courbure, par le théorème d'Ambrose-Singer. (fr)
  • 미분기하학에서, 매끄러운 다양체 상에 주어진 코쥘 접속 또는 에레스만 접속의 홀로노미(holonomy)는 곡률의 존재로부터 나타나는 기하학적 결과로, 닫힌 곡선을 따라 평행 운송을 했을 때 기하학적 정보가 변형되는 정도를 측정한 것이다. 평탄한 접속의 홀로노미는 모노드로미의 일종이며, 본질적으로 대역적인(global) 개념이다. 굽은 접속의 경우 홀로노미는 자명치 않은 국소적 측면과 대역적 측면을 함께 가진다. (ko)
  • In de differentiaalmeetkunde is de holonomie van een verbinding op een gladde variëteit een algemeen meetkundig gevolg van de kromming van de verbinding, die de mate, waarin paralleltransport rondom gesloten lussen er niet in slaagt de meetkundige gegevens, die worden vervoerd, te bewaren. Voor vlakke verbindingen is de geassocieerde holonomie een soort van monodromie, en is holonomie een inherent globaal begrip. Voor gekromde verbindingen heeft holonomie niet-triviale lokale en globale kenmerken. Volgens de stelling van Ambrose-Singer is de holonomie van een verbinding nauw verbonden met de kromming. Holonomie komt het meeste voor bij verbindingen die een zekere mate van symmetrie bezitten. Een voorbeeld van een dergelijke verbinding uit de Riemann-meetkunde is de Levi-Civita-verbinding. Ander voorbeelden zijn verbindingen in vectorbundels, de holonomie in een Cartan-verbinding en de holonomie van verbindingen in hoofdbundels. In al deze gevallen kan de holonomie van de verbinding worden omschreven als een lie-groep. Het begrip holonomie werd in 1926 voor het eerst gebruikt door Élie Cartan om symmetrische ruimten te kunnen bestuderen en omschrijven. (nl)
  • Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии в локально тривиальном топологическом расслоении. Напомним, что связность в векторном расслоении есть оператор, сопоставляющий каждому пути преобразование параллельного переноса . Однако, в отличие от ситуации, часто встречающейся в топологии, преобразование параллельного переноса меняется, если менять сам путь, даже если его концы при этом неизменны (не зависит от небольших изменений пути оно только в весьма частном, хотя и очень важном, случае ). Голономия есть мера того, насколько параллельный перенос может зависеть от малых шевелений пути. Именно, составной путь, пройденный из в вдоль , а затем обратно вдоль его вариации , можно воспринимать как замкнутый путь из точки в себя. Множество всех преобразований слоя , получаемых переносами вдоль замкнутых путей, начинающихся и кончающихся в , образует группу, которая называется группой голономии в точке и обозначается . Если рассматривать лишь параллельные переносы вдоль тех путей, которые стягиваемы в точку, получится её нормальная подгруппа, называемая группой локальной, или же ограниченной голономии, обозначаемая . Группы голономии в разных точках можно отождествить, соединив эти точки путём, однако это отождествление будет, вообще говоря, зависеть от выбора пути. Впрочем все эти группы изоморфны, что позволяет говорить просто о группе голономии и группе локальной голономии безотносительно выбора точки. Группа голономии в точке имеет по своей конструкции естественное представление в пространстве , называемое представлением голономии. Для плоской связности группа локальной голономии, по определению, тривиальна, а группа голономии есть группа монодромии этой плоской связности. В общем случае монодромия неплоской связности определяется через голономию, как факторгруппа . (ru)
  • Na geometria diferencial, holonomia de uma conexão de uma variedade diferenciável é uma consequência geométrica geral da curvatura da conexão medindo a extensão à qual o transporte paralelo dos lacetes fechados do entorno não preservam os dados geométricos sendo transportados. Para conexões planas, a holonomia associada é do tipo , e é um conceito inerentemente global. Para conexões de curvas, apresenta características de holonomia não triviais locais e globais. Qualquer tipo de conexão em uma variedade resulta, através dos seus mapas de transporte paralelos em alguma noção de holonomia. As formas mais comuns de holonomia são as conexões que têm algum tipo de simetria. (pt)
  • 微分几何中,一個微分流形上的联络的完整(英語:holonomy,又譯和樂),描述向量繞閉圈平行移动一週回到起點後,與原先相異的現象。平聯絡的和樂是一種現象,其於全域有定義。曲聯絡的和樂則有非平凡的局域和全域特點。 流形上任意一種聯絡,都可由其平行移動映射給出相應的和樂。常見的和樂由具有特定對稱的聯絡給出,例如黎曼几何中列维-奇维塔联络的和樂(稱為黎曼和樂)。向量丛聯絡的和樂、嘉当联络的和樂,以及主丛聯絡的和樂。在該些例子中,聯絡的和樂可用一個李群描述,稱為和樂群。聯絡的和樂與其曲率密切相關,見。 對黎曼和樂的研究導致了若干重要的發現。其最早由Élie Cartan ()引入,以用於的分類上。然而,很久以後,和樂群才用於更一般的黎曼幾何上。1952年, 乔治·德拉姆證明了:若黎曼流形的切丛可分解成局域和樂群作用下不變的子空間,則該流形分解為黎曼流形的笛卡儿积。稍後,於1953年, 給出所有不可約和樂的分類。黎曼和樂的分解和分類適用於物理和弦論。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 644921 (xsd:integer)
dbo:wikiPageLength
  • 41624 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1086408520 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Isadore Singer (en)
  • Élie Cartan (en)
  • Warren Ambrose (en)
dbp:first
  • Warren (en)
  • Élie (en)
  • Isadore M. (en)
dbp:last
  • Singer (en)
  • Ambrose (en)
  • Cartan (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1926 (xsd:integer)
  • 1953 (xsd:integer)
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • En geometria diferencial, l'holonomia d'una connexió d'una varietat suau és en general una conseqüència geomètrica de la curvatura de la connexió, que mesura com el transport paral·lel al voltant de llaços tancats no preserva les dades geomètriques que es transporten. Per a connexions planes, l'holonomia associada és un tipus de monodromia, i és un concepte inherentment global. Per a les connexions de corbes, l'holonomia té característiques locals i globals no trivials. (ca)
  • Der mathematische Begriff der Holonomiegruppe eines Zusammenhangs eines Vektor- oder Hauptfaserbündels über einer differenzierbaren Mannigfaltigkeit (abgekürzt auch einfach Holonomie) bezeichnet in der Differentialgeometrie die Gruppe linearer Transformationen, die durch den Paralleltransport von Vektoren entlang geschlossener Kurven induziert wird.Trägt eine Mannigfaltigkeit eine riemannsche Metrik, so ist deren riemannsche Holonomie durch die Holonomie des Levi-Civita-Zusammenhangs auf dem Tangentialbündel von gegeben. (de)
  • 미분기하학에서, 매끄러운 다양체 상에 주어진 코쥘 접속 또는 에레스만 접속의 홀로노미(holonomy)는 곡률의 존재로부터 나타나는 기하학적 결과로, 닫힌 곡선을 따라 평행 운송을 했을 때 기하학적 정보가 변형되는 정도를 측정한 것이다. 평탄한 접속의 홀로노미는 모노드로미의 일종이며, 본질적으로 대역적인(global) 개념이다. 굽은 접속의 경우 홀로노미는 자명치 않은 국소적 측면과 대역적 측면을 함께 가진다. (ko)
  • 微分几何中,一個微分���形上的联络的完整(英語:holonomy,又譯和樂),描述向量繞閉圈平行移动一週回到起點後,與原先相異的現象。平聯絡的和樂是一種現象,其於全域有定義。曲聯絡的和樂則有非平凡的局域和全域特點。 流形上任意一種聯絡,都可由其平行移動映射給出相應的和樂。常見的和樂由具有特定對稱的聯絡給出,例如黎曼几何中列维-奇维塔联络的和樂(稱為黎曼和樂)。向量丛聯絡的和樂、嘉当联络的和樂,以及主丛聯絡的和樂。在該些例子中,聯絡的和樂可用一個李群描述,稱為和樂群。聯絡的和樂與其曲率密切相關,見。 對黎曼和樂的研究導致了若干重要的發現。其最早由Élie Cartan ()引入,以用於的分類上。然而,很久以後,和樂群才用於更一般的黎曼幾何上。1952年, 乔治·德拉姆證明了:若黎曼流形的切丛可分解成局域和樂群作用下不變的子空間,則該流形分解為黎曼流形的笛卡儿积。稍後,於1953年, 給出所有不可約和樂的分類。黎曼和樂的分解和分類適用於物理和弦論。 (zh)
  • In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. (en)
  • En geometría diferencial, la holonomía de una conexión de una variedad suave es en general una consecuencia geométrica de la curvatura de la conexión, que mide como el transporte paralelo alrededor de lazos cerrados no preserva los datos geométricos que se transportan. Para conexiones planas, la holonomía asociada es un tipo de monodromía, y es un concepto inherentemente global. Para las conexiones de curvas, holonomía tiene características locales y globales no triviales. (es)
  • En mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale. Pour des connexions de courbure non nulle, l'holonomie a des aspects locaux et globaux non triviaux. (fr)
  • Na geometria diferencial, holonomia de uma conexão de uma variedade diferenciável é uma consequência geométrica geral da curvatura da conexão medindo a extensão à qual o transporte paralelo dos lacetes fechados do entorno não preservam os dados geométricos sendo transportados. Para conexões planas, a holonomia associada é do tipo , e é um conceito inerentemente global. Para conexões de curvas, apresenta características de holonomia não triviais locais e globais. (pt)
  • In de differentiaalmeetkunde is de holonomie van een verbinding op een gladde variëteit een algemeen meetkundig gevolg van de kromming van de verbinding, die de mate, waarin paralleltransport rondom gesloten lussen er niet in slaagt de meetkundige gegevens, die worden vervoerd, te bewaren. Voor vlakke verbindingen is de geassocieerde holonomie een soort van monodromie, en is holonomie een inherent globaal begrip. Voor gekromde verbindingen heeft holonomie niet-triviale lokale en globale kenmerken. Volgens de stelling van Ambrose-Singer is de holonomie van een verbinding nauw verbonden met de kromming. (nl)
  • Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии в локально тривиальном топологическом расслоении. (ru)
rdfs:label
  • Holonomia (ca)
  • Holonomie (de)
  • Holonomía (es)
  • Holonomy (en)
  • Holonomie (fr)
  • 홀로노미 (ko)
  • Holonomie (nl)
  • Holonomia (pt)
  • Голономия (ru)
  • 完整群 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License