×

Lowest-order weak Galerkin finite element methods for linear elasticity on rectangular and brick meshes. (English) Zbl 1419.65110

Summary: This paper investigates lowest-order weak Galerkin finite element methods for solving linear elasticity problems on rectangular and brick meshes. Specifically, constant vectors are used in element interiors and on element interfaces respectively for approximating displacement. For these constant basis functions, their discrete weak gradients are calculated in the local Raviart-Thomas spaces \( RT_{[0]}^d \) (\( d=2 \) or 3), whereas their discrete weak divergences are calculated as elementwise constants. Discrete weak strains are calculated accordingly. Then these quantities are used to develop finite element schemes in both strain-div and grad-div formulations, on both rectangular and brick meshes. A theoretical analysis supported by numerical experiments in both 2-dim and 3-dim reveal that the methods are locking-free and have optimal 1st order convergence in displacement, stress, and dilation (divergence of displacement), when the exact solution has full regularity. The methods can also capture low-regularity solutions very well. Strategies for efficient implementation including Schur complement are presented. Extension to quadrilateral and hexahedral meshes, in both theoretical analysis and numerical experiments, is also examined.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
74S05 Finite element methods applied to problems in solid mechanics

Software:

LNG_FEM
Full Text: DOI

References:

[1] Alberty, J., Carstensen, C., Funken, S., Klose, R.: Matlab implementation of the finite element method in elasticity. Computing 69, 239-263 (2002) · Zbl 1239.74092 · doi:10.1007/s00607-002-1459-8
[2] Arnold, D., Awanou, G., Qiu, W.: Mixed finite elements for elasticity on quadrilateral meshes. Adv. Comput. Math. 41, 553-572 (2015) · Zbl 1320.74096 · doi:10.1007/s10444-014-9376-x
[3] Arnold, D., Boffi, D., Falk, R.: Approximation by quadrilateral finite elements. Math. Comput. 71, 909-922 (2002) · Zbl 0993.65125 · doi:10.1090/S0025-5718-02-01439-4
[4] Brenner, S., Sung, L.-Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321-338 (1992) · Zbl 0766.73060 · doi:10.1090/S0025-5718-1992-1140646-2
[5] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, Third edn. Springer, New York (2008) · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[6] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[7] Carstensen, C., Schedensack, M.: Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. 35, 1591-1621 (2015) · Zbl 1329.74272 · doi:10.1093/imanum/dru048
[8] Hu, J., Man, H., Wang, J., Zhang, S.: The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids. Comput. Math. Appl. 71, 1317-1336 (2016) · Zbl 1443.65338 · doi:10.1016/j.camwa.2016.01.023
[9] Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001) · Zbl 0965.35003
[10] Lamichhane, B.P.: A mixed finite element method for nearly incompressible elasticity and Stokes equations using primal and dual meshes with quadrilateral and hexahedral grids. J. Comput. Appl. Math. 260, 356-363 (2014) · Zbl 1293.65157 · doi:10.1016/j.cam.2013.09.056
[11] Lamichhane, B.P., Stephan, E.P.: A symmetric mixed finite element method for nearly incompressible elasticity based on biorthogonal systems. Numer. Methods PDEs 28, 1336-1353 (2012) · Zbl 1345.74102 · doi:10.1002/num.20683
[12] Lawrence Livermore National Laboratory. VisIt User’s Manual, 1.5 edition (2005)
[13] Li, H., Nistor, V.: LNG FEM: graded meshes on domains of polygonal structures. Contemp. Math. 586, 239-246 (2013) · Zbl 1280.65128 · doi:10.1090/conm/586/11655
[14] Liu, J., Cali, R.: A note on the approximation properties of the locally divergence-free finite elements. Int. J. Numer. Anal. Model. 5, 693-703 (2008) · Zbl 1170.65096
[15] Liu, J., Tavener, S., Wang, Z.: The lowest order weak Galerkin finite element methods for the Darcy equation on quadrilateral and hybrid meshes. J. Comput. Phys. 359, 312-330 (2018) · Zbl 1383.76449 · doi:10.1016/j.jcp.2018.01.001
[16] Mao, S., Chen, S.: A quadrilateral nonconforming finite element for linear elasticity problem. Adv. Comput. Math. 28, 81-100 (2008) · Zbl 1126.74049 · doi:10.1007/s10444-006-9017-0
[17] Mijuca, D.: On hexahedral finite element hc8/27 in elasticity. Comput. Mech. 33, 466-480 (2004) · Zbl 1115.74372 · doi:10.1007/s00466-003-0546-9
[18] Wang, C., Wang, J., Wang, R., Zhang, R.: A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation. J. Comput. Appl. Math. 307, 346-366 (2016) · Zbl 1338.74104 · doi:10.1016/j.cam.2015.12.015
[19] Wang, J., Ye, X.: A weak Galerkin finite element method for second order elliptic problems. J. Comput. Appl. Math. 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[20] Wheeler, M., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121, 165-204 (2012) · Zbl 1277.65100 · doi:10.1007/s00211-011-0427-7
[21] Yi, S.-Y.: Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions. Calcolo 42, 115-133 (2005) · Zbl 1168.74463 · doi:10.1007/s10092-005-0101-5
[22] Yi, S.-Y.: A new nonconforming mixed finite element method for linear elasticity. Math. Models Methods Appl. Sci. 16, 979-999 (2006) · Zbl 1094.74057 · doi:10.1142/S0218202506001431
[23] Zhang, S.: On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math. 98, 559-579 (2004) · Zbl 1065.65135 · doi:10.1007/s00211-004-0536-7
[24] Zhang, Z.: Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34, 640-663 (1997) · Zbl 0870.73074 · doi:10.1137/S0036142995282492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.