×

Mixed finite elements for elasticity on quadrilateral meshes. (English) Zbl 1320.74096

Summary: We present stable mixed finite elements for planar linear elasticity on general quadrilateral meshes. The symmetry of the stress tensor is imposed weakly and so there are three primary variables, the stress tensor, the displacement vector field, and the scalar rotation. We develop and analyze a stable family of methods, indexed by an integer \(r\geq 2\) and with rate of convergence in the \(L^2\) norm of order \(r\) for all the variables. The methods use Raviart-Thomas elements for the stress, piecewise tensor product polynomials for the displacement, and piecewise polynomials for the rotation. We also present a simple first order element, not belonging to this family. It uses the lowest order BDM elements for the stress, and piecewise constants for the displacement and rotation, and achieves first order convergence for all three variables.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33, 367-383 (1979) · Zbl 0401.73079 · doi:10.1007/BF01399320
[2] Arnold, D.N., Awanou, G.: Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 15(9), 1417-1429 (2005) · Zbl 1077.74044 · doi:10.1142/S0218202505000741
[3] Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comp. 71(239), 909-922 (2002). electronic · Zbl 0993.65125 · doi:10.1090/S0025-5718-02-01439-4
[4] Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42(6), 2429-2451 (2005) · Zbl 1086.65105 · doi:10.1137/S0036142903431924
[5] Arnold, D.N., Brezzi, F., Douglas, J. Jr.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347-367 (1984) · Zbl 0633.73074 · doi:10.1007/BF03167064
[6] Arnold, DN; Falk, RS; Winther, R.; Arnold, D. (ed.); Bochev, P. (ed.); Lehoucq, R. (ed.); Nicolaides, R. (ed.); Shaskov, M. (ed.), Differential complexes and stability of finite element methods II: The elasticity complex, 47-68 (2006), Berlin · doi:10.1007/0-387-38034-5_3
[7] Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer 15, 1-155 (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[8] Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76, 1699-1723 (2007) · Zbl 1118.74046 · doi:10.1090/S0025-5718-07-01998-9
[9] Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401-419 (2002) · Zbl 1090.74051 · doi:10.1007/s002110100348
[10] Awanou, G.: Rectangular mixed elements for elasticity with weakly imposed symmetry condition. Adv. Comput. Math. 38(2), 351-367 (2013) · Zbl 1333.74079 · doi:10.1007/s10444-011-9240-1
[11] Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95-121 (2009) · Zbl 1154.74041
[12] Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36519-5 · Zbl 1277.65092 · doi:10.1007/978-3-642-36519-5
[13] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8, 129-151 (1974) · Zbl 0338.90047
[14] Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79(271), 1331-1349 (2010) · Zbl 1369.74078 · doi:10.1090/S0025-5718-10-02343-4
[15] Falk, RS; Boffi, D. (ed.); Gastaldi, L. (ed.), Finite element methods for linear elasticity (2008), Berlin
[16] Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76, 419-440 (1997) · Zbl 0880.73064 · doi:10.1007/s002110050270
[17] Fortin, M.: Old and new finite elements for incompressible flows. Internat. J. Numer. Methods Fluids 1(4), 347-364 (1981) · Zbl 0467.76030 · doi:10.1002/fld.1650010406
[18] Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[19] Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32(1), 352-372 (2012) · Zbl 1232.74101 · doi:10.1093/imanum/drq047
[20] Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30(1), 103-116 (1978) · Zbl 0427.73072 · doi:10.1007/BF01403910
[21] Morley, M.E.: A family of mixed finite elements for linear elasticity. Numer. Math. 55(6), 633-666 (1989) · Zbl 0671.73054 · doi:10.1007/BF01389334
[22] Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48(4), 447-462 (1986) · Zbl 0563.65072 · doi:10.1007/BF01389651
[23] Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513-538 (1988) · Zbl 0632.73063 · doi:10.1007/BF01397550
[24] Stenberg, R.: Two low-order mixed methods for the elasticity problem. In: The mathematics of finite elements and applications, VI (Uxbridge, 1987), pp. 271-280. Academic Press, London (1988) · Zbl 0686.73049
[25] Fraeijs de Veubeke, BM; Zienkiewicz, OC (ed.); Holister, GS (ed.), Displacement and equilibrium models in the finite element method (1965), New York
[26] Watwood, V.B. Jr., Hartz, B.J.: An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids Structures 4, 857-873 (1968) · Zbl 0164.26201 · doi:10.1016/0020-7683(68)90083-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.