×

Infinite divisibility for stochastic processes and time change. (English) Zbl 1111.60028

The authors present some general results on infinite divisibility, self-decomposability and the class \(L_m\) (the class of measures \(\mu\) such that for any \(c\in (0,1)\) there is a distribution \(\rho^{(c)}\) such that \(\hat{\mu}(z)=\hat{\mu}(cz)\hat{\rho^{(c)}}(z)\), \(z\in \mathbb{R}^d\), and \(\hat{\mu}(z)=\hat{\mu}(cz)\hat{\rho^{(c)}}(z)\) also holds with some \(\rho^{(c)}\in L_{m-1}\)). Several relations between various concepts and the properties of such processes are given. Also, a new concept of temporal self-decomposability is introduced: the process is called temporal self-decomposable if for each \(c\in (0,1)\) there exist independent processes \(X^{(c)}\) and \(U^{(c)}\) such that \(X\overset{d}{=} X^{(c)}+U^{(c)},\) and \(X^{(c)}=\{X^{(c)}_t:\,\,t\geq 0\}\overset{d}{=} \{X_{ct}\,\, t\geq 0\}\).
The class of temporal self-decomposable processes is larger than the class of Lévy processes. On the other hand, under some restriction temporary self-decomposable processes are infinitely divisible. The notion of additive processes is also between the notion of Lévy processes and the notion of infinitely divisible processes. It is shown that an additive process in not always temporary self-decomposable, and vice versa. Various examples are given. Further, the time-change of stochastic processes is discussed, in particular, the authors present the results on the inheritance of infinite divisibility under time change when the base process (i.e. the process which is to be time-changed) is a Lévy process.

MSC:

60G51 Processes with independent increments; Lévy processes
60G18 Self-similar stochastic processes
Full Text: DOI

References:

[1] Akita K., Maejima M. (2002). On certain self-decomposable self-similar processes with independent increments. Statist. Probab. Letters 59, 53–59 · Zbl 1014.60043 · doi:10.1016/S0167-7152(02)00163-3
[2] Barndorff-Nielsen O.E., Blæsild P., Schmiegel J. (2004). A parsimonious and universal description of turbulent velocity increments. Eur. Phys. J. B 41, 345–363 · doi:10.1140/epjb/e2004-00328-1
[3] Barndorff-Nielsen O.E.., Nicolato E., Shephard N. (2002). Some recent developments in stochastic volatility modelling. Quantitative Finance 2, 11–23 · doi:10.1088/1469-7688/2/1/301
[4] Barndorff-Nielsen O.E.., Pedersen J., Sato K. (2001). Multivariate subordination, selfdecomposability and stability. Adv. Appl. Probab. 33, 160–187 · Zbl 0982.60046 · doi:10.1239/aap/999187902
[5] Barndorff-Nielsen O.E.., Shephard N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics (with Discussion). J. R. Statist. Soc. B 63, 167–241 · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[6] Barndorff-Nielsen O.E.., Shephard N. (2006). Impact of jumps on returns and realised variances: econometric analysis of time-deformed L évy processes. J. Econometrics 131, 217–252 · Zbl 1337.62342 · doi:10.1016/j.jeconom.2005.01.009
[7] Barndorff-Nielsen O. E., and Shephard N. (2006). Continuous Time Approach to Financial Volatility. Cambridge University Press. (To appear.) · Zbl 1095.60023
[8] Barndorff-Nielsen O.E., and Shiryaev A.N. (2007). Change of Time and Change of Measure. (In preparation.) · Zbl 1234.60003
[9] Bertoin J. (1996). Lévy Processes. Cambridge University Press, Cambridge · Zbl 0861.60003
[10] Bertoin J. (1997). Subordinators: examples and Applications. In Bernard P. (ed.), Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilities de Saint-Flour XXVII–1997, pp. 1–91 · Zbl 0955.60046
[11] Bochner S. (1949). Diffusion equation and stochastic processes. P. Nat. Acad. Sci. 85, 369–370 · Zbl 0033.06803
[12] Bochner S. (1955). Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley and Los Angeles · Zbl 0068.11702
[13] Carr P., Geman H., Madan D.B., Yor M. (2002). The fine structure of asset returns: an empirical investigation. J. Business 75, 305–332 · doi:10.1086/338705
[14] Carr P., Geman H., Madan D.B., Yor M. (2003). Stochastic volatility for Lévy processes. Math. Finance 13, 345–382 · Zbl 1092.91022 · doi:10.1111/1467-9965.00020
[15] Chung K.L., Zambrini J.-C. (2003). Introduction to Random Time and Quantum Randomness. World Scientific Publishing, Singapore · Zbl 1041.81074
[16] Cont R., Tankov P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC Press, London · Zbl 1052.91043
[17] Eberlein E. (2001). Application of generalized hyperbolic Lévy motions to finance. In: Barndorff-Nielsen O.E., Mikosch T., Resnick S. (eds), Lévy Processes: Theory and Applications. Birkhäuser Verlag, Basel, pp. 319–337 · Zbl 0982.60045
[18] Eberlein E., Prause K. (2002). The generalized hyperbolic model: financial derivatives and risk measures. In: Geman H., Madan D., Pliska S., Vorst T. (eds), Mathematical Finance–Bachelier Congress 2000. Springer Verlag, Berlin, pp. 245–267 · Zbl 0996.91067
[19] Embrechts P., Maejima M. (2002). Selfsimilar Processes. Princeton Univ Press, Princeton · Zbl 1008.60003
[20] Geman H., Madan D.B., Yor M. (2001). Time changes for Lévy processes. Math. Finance 11, 79–96 · Zbl 0983.60082 · doi:10.1111/1467-9965.00108
[21] Geman H., Madan D.B., Yor M. (2002). Stochastic volatility, jumps and hidden time changes. Finance and Stochastics 6, 63–90 · Zbl 1006.60026 · doi:10.1007/s780-002-8401-3
[22] Itô K., McKean H.P., Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin
[23] Jeanblanc M., Pitman J., Yor M. (2002). Self-similar processes with independent increments associated with Lévy and Bessel processes. Stoch. Proc. Appl. 100, 223–231 · Zbl 1059.60052 · doi:10.1016/S0304-4149(02)00098-4
[24] Kasahara Y., Maejima M., Vervaat W. (1988). Log-fractional stable processes. Stoch. Proc. Appl. 30, 329–339 · Zbl 0713.60049 · doi:10.1016/0304-4149(88)90093-2
[25] Maejima M., Sato K. (2003). Semi-Lévy processes, semi-selfsimilar additive processes, and semi-stationary Ornstein–Uhlenbeck type processes. J. Math. Kyoto Univ. 43, 609–639 · Zbl 1066.60050
[26] Maejima M., Sato K., Watanabe T. (2000). Distributions of selfsimilar and semi-selfsimilar processes with independent increments. Statist. Probab. Letters 47, 395–401 · Zbl 0955.60038 · doi:10.1016/S0167-7152(99)00184-4
[27] Maejima M., Suzuki K., Tamura Y. (1999). Some multivariate infinitely divisible distributions and their projections. Probab. Theory Math. Statist. 19, 421–428 · Zbl 0985.60017
[28] Maruyama G. (1970). Infinitely divisible processes. Theory Probab. Appl. 15, 1–22 · Zbl 0268.60036 · doi:10.1137/1115001
[29] Pedersen J., Sato K. (2003). Cone-parameter convolution semigroups and their subordination. Tokyo J. Math. 26, 503–525 · Zbl 1039.43004 · doi:10.3836/tjm/1244208605
[30] Rocha-Arteaga A., and Sato K. (2003) Topics in Infinitely Divisible Distributions and Lévy Processes. Aportaciones Matemáticas, Investigación 17, Sociedad Matemática Mexicana. · Zbl 1054.60019
[31] Samorodnitsky G., Taqqu M.S. (1994). Stable Non-Gaussian Random Processes. Chapman & Hall, New York · Zbl 0925.60027
[32] Sato K. (1991). Self-similar processes with independent increments. Probab. Th. Rel. Fields 89, 285–300 · Zbl 0725.60034 · doi:10.1007/BF01198788
[33] Sato K. (1998). Multivariate distributions with selfdecomposable projections. J. Korean Math. Soc. 35, 783–791 · Zbl 0915.60024
[34] Sato K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ Press, Cambridge · Zbl 0973.60001
[35] Sato K. (2004). Stochastic integrals in additive processes and application to semi-Lévy processes. Osaka J. Math. 41, 211–236 · Zbl 1050.60054
[36] Skorohod A.V. (1991). Random Processes with Independent Increments. Kluwer Academic Pub., Dordrecht, Netherlands
[37] Winkel M. (2001). The recovery problem for time-changed Lévy processes. MaPhySto Research Report 2001–37.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.