×

Self-similar processes with independent increments. (English) Zbl 0725.60034

A stochastic process \(\{X_ t:\) \(t\geq 0\}\) on \({\mathbb{R}}^ d\) is called wide-sense self-similar if, for each \(c>0\), there are a positive number a and a function b(t) such that \(\{X_{ct}\}\) and \(\{aX_ t+b(t)\}\) have common finite-dimensional distributions. If \(\{X_ t\}\) is wide-sense self-similar with independent increments, stochastically continuous, and \(X_ 0=const\), then, for every t, the distribution of \(X_ t\) is of class L. Conversely, if \(\mu\) is a distribution of class L, then, for every \(H>0\), there is a unique process \(\{X_ t^{(H)}\}\) self-similar with exponent H with independent increments such that \(X_ 1\) has distribution \(\mu\). Consequences of this characterization are discussed. The properties (finite-dimensional distributions, behaviors for small time, etc.) of the process \(\{X_ t^{(H)}\}\) (called the process of class L with exponent H induced by \(\mu\)) are compared with those of the Lévy process \(\{Y_ t\}\) such that \(Y_ 1\) has distribution \(\mu\). Results are generalized to operator-self-similar processes and distributions of class OL. A process \(\{X_ t\}\) on \({\mathbb{R}}^ d\) is called wide-sense operator-self-similar if, for each \(c>0\), there are a linear operator \(A_ c\) and a function \(b_ c(t)\) such that \(\{X_{ct}\}\) and \(\{A_ cX_ t+b_ c(t)\}\) have common finite- dimensional distributions. It is proved that, if \(\{X_ t\}\) is wide- sense operator-self-similar and stochastically continuous, then the \(A_ c\) can be chosen as \(A_ c=c^ Q\) with a linear operator Q with some special spectral properties. This is an extension of a theorem of W. N. Hudson and J. D. Mason [Trans. Am. Math. Soc. 273, 281-297 (1982; Zbl 0508.60044)].
Reviewer: K.Sato (Nagoya)

MSC:

60G18 Self-similar stochastic processes
60J99 Markov processes

Citations:

Zbl 0508.60044
Full Text: DOI

References:

[1] Fristedt, B.E.: Sample function behavior of increasing processes with stationary, independent increments. Pac. J. Math.21, 21-33 (1967) · Zbl 0189.50802
[2] Gihman, I.I., Skorohod, A.V.: The theory of stochastic processes, vol. 1. Berlin Heidelberg New York: Springer 1975 · Zbl 0305.60027
[3] Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. 2nd ed. Reading, Mass: Addison-Wesley 1968 · Zbl 0056.36001
[4] Hudson, W.N., Mason, J.D.: Operator-self-similar processes in a finite-dimensional space. Trans. Am. Math. Soc.273, 281-297 (1982) · Zbl 0508.60044 · doi:10.1090/S0002-9947-1982-0664042-7
[5] Kawazu, K.: Some topics on random walk in random environment. Seminar talk at Nagoya University on March 13, 1989 · Zbl 0675.60072
[6] Kawazu, K.: Diffusion process in random environment and related topics. In: Fifth internat. Vilnius conference on probab. theory and math. stat. Abstracts of communications, vol. 1, pp. 244-245 Vilnius: 1989
[7] Khintchine, A.Ya.: Limit laws for sums of independent random variables. Moscow Leningrad: ONTI 1938 (Russian)
[8] Khintchine, A.Ya.: Sur la croissance locale des processus stochastiques homogènes à accroissements indépendants. Izv. Akad. Nauk SSSR, Ser. Mat.3, 487-508 (1939) [Russian] · JFM 65.1342.02
[9] Laha, R.G., Rohatgi, V.K.: Operator self similar stochastic processes inR d . Stochastic Processes Appl.12, 73-84 (1982) · Zbl 0472.60006 · doi:10.1016/0304-4149(81)90012-0
[10] Lamperti, J.W.: Semi-stable stochastic processes. Trans. Am. Math. Soc.104, 62-78 (1962) · Zbl 0286.60017 · doi:10.1090/S0002-9947-1962-0138128-7
[11] Lévy, P.: Théorie de l’addition des variables aléatoires. 2ème éd. Paris: Gauthier-Villars 1954 (1ère éd. 1937)
[12] Loève, M.: Probability theory, vol. 1 and 2, 4th ed. New York Heidelberg Berlin: Springer 1977/78 · Zbl 0095.12201
[13] Sato, K.: ClassL of multivariate distributions and its subclasses. J. Multivariate Anal.10, 207-232 (1980) · Zbl 0425.60013 · doi:10.1016/0047-259X(80)90014-7
[14] Sato, K.: Absolute continuity of multivariate distributions of classL. J. Multivariate Anal.12, 89-94 (1982) · Zbl 0485.60010 · doi:10.1016/0047-259X(82)90085-9
[15] Sato, K.: Lectures on multivariate infinitely divisible distributions and operator-stable processes. Technical Report Series, Lab. Res. Statist. Probab. Carleton Univ. and Univ. Ottawa, No. 54, 1985
[16] Sato, K.: Strictly operator-stable distributions. J. Multivariate Anal.22, 278-295 (1987) · Zbl 0632.60013 · doi:10.1016/0047-259X(87)90091-1
[17] Sato, K., Yamazato, M.: On distribution functions of classL. Z. Wahrscheinlichkeitstheor. Verw. Geb.43, 273-308 (1978) · Zbl 0395.60019 · doi:10.1007/BF00534763
[18] Sato, K., Yamazato, M.: On higher derivatives of distribution functions of classL. J. Math. Kyoto Univ.21, 575-591 (1981) · Zbl 0488.60025
[19] Sato, K., Yamazato, M.: Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type. Stochastic Processes Appl.17, 73-100 (1984) · Zbl 0533.60021 · doi:10.1016/0304-4149(84)90312-0
[20] Sato, K., Yamazato, M.: Completely operator-self-decomposable distributions and operatorstable distributions. Nagoya Math. J.97, 71-94 (1985) · Zbl 0577.60025
[21] Sharpe, M.: Operator-stable probability distributions on vector groups. Trans. Am. Math. Soc.136, 51-65 (1969) · Zbl 0192.53603 · doi:10.1090/S0002-9947-1969-0238365-3
[22] Shtatland, E.S.: On local properties of processes with independent increments. Theory Probab. Appl.10, 317-322 (1965) · doi:10.1137/1110036
[23] Taqqu, M.S.: A bibliographical guide to self-similar processes and long-range dependence. In: Eberlein, E., Taqqu, M.S. (eds.) Dependence in probability and statistics, pp. 137-162 Boston: Birkhäuser 1986 · Zbl 0596.60054
[24] Urbanik, K.: Lévy’s probability measures on Euclidean spaces. Stud. Math.44, 119-148 (1972) · Zbl 0251.60022
[25] Wolfe, S.J.: On the unimodality ofL functions. Ann. Math. Stat.42, 912-918 (1971) · Zbl 0219.60026 · doi:10.1214/aoms/1177693320
[26] Wolfe, S.J.: On the continuity properties ofL functions. Ann. Math. Stat.42, 2064-2073 (1971) · Zbl 0227.60014 · doi:10.1214/aoms/1177693075
[27] Wolfe, S.J.: On the unimodality of multivariate symmetric distribution functions of classL. J. Multivariate Anal.8, 141-145 (1978) · Zbl 0379.60017 · doi:10.1016/0047-259X(78)90026-X
[28] Yamazato, M.: Unimodality of infinitely divisible distributions of classL. Ann. Probab.6, 523-531 (1978) · Zbl 0394.60017 · doi:10.1214/aop/1176995474
[29] Yamazato, M.: Absolute continuity of operator-self-decomposable distributions onR d . J. Multivariate Anal.13, 550-560 (1983) · Zbl 0522.60012 · doi:10.1016/0047-259X(83)90040-4
[30] Yamazato, M.:OL distributions on Euclidean spaces. Theory Probab. Appl.29, 1-17 (1984) · Zbl 0555.60015 · doi:10.1137/1129001
[31] Zolotarev, V.M.: The analytic structure of infinitely divisible laws of classL. Litov. Mat. Sb.3, 123-40 (1963) [Russian]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.