×

Crossover behaviours exhibited by fluctuations and correlations in a chain of active particles. (English) Zbl 1519.82070

Summary: We study the motion of tagged particles in a harmonic chain of active particles. We consider three models of active particle dynamics – run and tumble particle (RTP), active Ornstein-Uhlenbeck particle (AOUP) and active Brownian particle (ABP). We investigate the variance, autocorrelation, covariance and unequal time cross-correlation of two tagged particles. For all three models, we observe that the mean squared displacement undergoes a crossover from the super-diffusive \(\sim t^\mu\) scaling for \(t \ll \tau_{\mathrm{A}}\) (\(\tau_{\mathrm{A}}\) being the time scale arising due to the activity) to the sub-diffusive \(\sim\sqrt{t}\) scaling for \(t \gg \tau_{\mathrm{A}}\), where \(\mu = \frac{3}{2}\) for RTP and \(\mu = \frac{5}{2}\) for AOUP. For the \(x\) and \(y\)-coordinates of ABPs, we get \(\mu = \frac{7}{2}\) and \(\mu = \frac{5}{2}\) respectively. We show that these crossover behaviours in each case can be described by an appropriate crossover function that connects the two scaling regimes. We explicitly compute these crossover functions. In addition, we also find that the equal and unequal time autocorrelation and cross-correlations obey interesting scaling forms in the appropriate limits of the observation time \(t\). The associated scaling functions are rigorously derived in all cases. All our analytical results are well supported by the numerical simulations.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] Lieb, E. H.; Mattis, D. C., Mathematical Physics in One Dimension: Exactly Solvable Models of Interacting Particles (1966), New York: Academic, New York
[2] Ha, Z. N C., Quantum Many-Body System in One Dimension (1996), Singapore: World Scientific, Singapore · Zbl 0952.82501
[3] Lebowitz, J. L., Simple Models of Equilibrium and Nonequilibrium Phenomena (1987), Amsterdam: Elsevier, Amsterdam · Zbl 0623.00024
[4] Wioland, H.; Lushi, E.; Goldstein, R. E., New J. Phys., 18 (2016) · doi:10.1088/1367-2630/18/7/075002
[5] Stenhammer, J.; Nardini, C.; Nash, R.; Marenduzzo, D.; Mozorov, A., Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.028005
[6] Reichhardt, C.; Olson Reichhardt, C. J., Soft Matter, 10, 7502 (2014) · doi:10.1039/c4sm01273a
[7] Gans, W.; Blumen, A.; Amann, A., Large-Scale Molecular Systems Quantum and Stochastic Aspects—Beyond the Simple Molecular Picture (1990), New York: Plenum, New York
[8] Ben-Avraham, D.; Doering, C. R., Phys. Rev. A, 37, 5007 (1988) · doi:10.1103/physreva.37.5007
[9] Privman, V., Nonequilibrium Statistical Mechanics in One Dimension (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0941.00045
[10] Harris, T. E., J. Appl. Probab., 2, 323 (1965) · doi:10.1017/s002190020010868x
[11] Jepsen, D. W., J. Math. Phys., 6, 405 (1965) · Zbl 0129.43607 · doi:10.1063/1.1704288
[12] Krapivsky, P. L.; Mallick, K.; Sadhu, T., J. Stat. Mech. (2015) · Zbl 1456.82672 · doi:10.1088/1742-5468/2015/09/p09007
[13] Bénichou, O.; Illien, P.; Oshanin, G.; Sarracino, A.; Voituriez, R., J. Phys.: Condens. Matter, 30 (2018) · doi:10.1088/1361-648x/aae13a
[14] Jerome, K. P., Phys. Bull., 25, 557 (1974) · doi:10.1088/0031-9112/25/12/009
[15] Alexander, S.; Pincus, P., Phys. Rev. B, 18, 2011 (1978) · doi:10.1103/physrevb.18.2011
[16] Rödenbeck, C.; Kärger, J.; Hahn, K., Phys. Rev. E, 57, 4382 (1998) · doi:10.1103/physreve.57.4382
[17] Barkai, E.; Silbey, R., Phys. Rev. Lett., 102 (2009) · doi:10.1103/physrevlett.102.050602
[18] Hegde, C.; Sabhapandit, S.; Dhar, A., Phys. Rev. Lett., 113 (2014) · doi:10.1103/physrevlett.113.120601
[19] Ferrari, P. A.; Fontes, L. R G., Electron. J. Probab., 3, 134 (1998) · Zbl 0903.60089 · doi:10.1214/ejp.v3-28
[20] Rajesh, R.; Majumdar, S. N., Phys. Rev. E, 64 (2001) · doi:10.1103/physreve.64.036103
[21] Cividini, J.; Kundu, A.; Majumdar, S. N.; Mukamel, D., J. Phys. A: Math. Theor., 49 (2016) · Zbl 1353.82050 · doi:10.1088/1751-8113/49/8/085002
[22] Cividini, J.; Kundu, A.; Majumdar, S. N.; Mukamel, D., J. Stat. Mech. (2016) · Zbl 1459.82170 · doi:10.1088/1742-5468/2016/05/053212
[23] Kundu, A.; Cividini, J., Europhys. Lett., 115, 54003 (2016) · doi:10.1209/0295-5075/115/54003
[24] Ponet, A.; Bénichou, O.; Démery, V.; Oshanin, G., Phys. Rev. E, 97 (2018) · doi:10.1103/physreve.97.062119
[25] Ponet, A.; Bénichou, O.; Démery, V.; Oshanin, G., Phys. Rev. Res., 1 (2019) · doi:10.1103/physrevresearch.1.033089
[26] Gupta, V.; Nivarthi, S. S.; McCormick, A. V.; Ted Davis, H., Chem. Phys. Lett., 247, 596 (1995) · doi:10.1016/s0009-2614(95)01246-x
[27] Hahn, K.; Kärger, J.; Kukla, V., Phys. Rev. Lett., 76, 2762 (1996) · doi:10.1103/physrevlett.76.2762
[28] Wei, Q.; Bechinger, C.; Leiderer, P., Science, 287, 625 (2000) · doi:10.1126/science.287.5453.625
[29] Ramaswamy, S., Annu. Rev. Condens. Matter Phys., 1, 323-345 (2010) · doi:10.1146/annurev-conmatphys-070909-104101
[30] Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L., Eur. Phys. J. Spec. Top., 202, 1-162 (2012) · doi:10.1140/epjst/e2012-01529-y
[31] Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Rev. Mod. Phys., 85, 1143 (2013) · doi:10.1103/revmodphys.85.1143
[32] Ramaswamy, S., Active matter, J. Stat. Mech. (2017) · Zbl 1457.82202 · doi:10.1088/1742-5468/aa6bc5
[33] Schweitzer, F., Brownian Agents and Active Particles Collective Dynamics in the Natural and Social Sciences (2003), Berlin: Springer, Berlin · Zbl 1140.91012
[34] Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G., Rev. Mod. Phys., 88 (2016) · doi:10.1103/revmodphys.88.045006
[35] Cates, M. E.; Tailleur, J., Annu. Rev. Condens. Matter Phys., 6, 219-244 (2015) · doi:10.1146/annurev-conmatphys-031214-014710
[36] Gonnella, G.; Marenduzzo, D.; Suma, A.; Tiribocchi, A., C. R. Physique, 16, 316-331 (2015) · doi:10.1016/j.crhy.2015.05.001
[37] Partridge, B.; Lee, C. F., Phys. Rev. Lett., 123 (2019) · doi:10.1103/physrevlett.123.068002
[38] Caprini, L.; Marconi, U.; Puglisi, A., Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.078001
[39] Ballerini, M., Proc. Natl Acad. Sci., 105, 1232-1237 (2008) · doi:10.1073/pnas.0711437105
[40] Katz, Y.; Tunstrom, K.; Ioannou, C. C.; Huepe, C.; Couzin, I. D., Proc. Natl Acad. Sci., 108, 18720-18725 (2011) · doi:10.1073/pnas.1107583108
[41] Redner, G. S.; Hagan, M. F.; Baskaran, A., Phys. Rev.Lett., 110 (2013) · doi:10.1103/physrevlett.110.055701
[42] Bricard, A.; Caussin, J-B; Desreumaux, N.; Dauchot, O.; Bartolo, D., Nature, 503, 95 (2013) · doi:10.1038/nature12673
[43] Solon, A. P.; Fily, Y.; Baskaran, A.; Cates, M. E.; Kafri, Y.; Kardar, M.; Tailleur, J., Nat. Phys., 11, 673-678 (2015) · doi:10.1038/nphys3377
[44] Basu, U.; Majumdar, S. N.; Rosso, A.; Schehr, G., Phys. Rev. E, 98 (2018) · doi:10.1103/physreve.98.062121
[45] Malakar, K.; Das, A.; Kundu, A.; Kumar, K. V.; Dhar, A., Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.022610
[46] Chaudhuri, D.; Dhar, A. (2020)
[47] Pototsky, A.; Stark, H., Europhys. Lett., 98, 50004 (2012) · doi:10.1209/0295-5075/98/50004
[48] Basu, U.; Majumdar, S. N.; Rosso, A.; Schehr, G., Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.062116
[49] Malakar, K.; Jemseena, V.; Kundu, A.; Vijay Kumar, K.; Sabhapandit, S.; Majumdar, S. N.; Redner, S.; Dhar, A., J. Stat. Mech. (2018) · Zbl 1459.82182 · doi:10.1088/1742-5468/aab84f
[50] Dhar, A.; Kundu, A.; Majumdar, S. N.; Sabhapandit, S.; Schehr, G., Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.032132
[51] Basu, U.; Majumdar, S. N.; Rosso, A.; Sabhapandit, S.; Schehr, G., J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.60094 · doi:10.1088/1751-8121/ab6af0
[52] Demaerel, T.; Maes, C., Phys. Rev. E, 97 (2018) · doi:10.1103/physreve.97.032604
[53] Angelani, L.; Di Leonardo, R.; Paoluzzi, M., Eur. Phys. J. E, 37, 59 (2014) · doi:10.1140/epje/i2014-14059-4
[54] Scacchi, A.; Sharma, A., Mol. Phys., 116, 460-464 (2018) · doi:10.1080/00268976.2017.1401743
[55] Mori, F.; Doussal, P. L.; Majumdar, S. N.; Schehr, G., Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.090603
[56] Singh, P.; Kundu, A., J. Stat. Mech. (2019) · Zbl 1457.82347 · doi:10.1088/1742-5468/ab3283
[57] Hartmann, A. K.; Majumdar, S. N.; Schawe, H.; Schehr, G., J. Stat. Mech. (2020) · Zbl 1456.60105 · doi:10.1088/1742-5468/ab7c5f
[58] Singh, P.; Kundu, A. (2020)
[59] Woillez, E.; Zhao, Y.; Kafri, Y.; Lecomte, V.; Tailleur, J., Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.258001
[60] Majumdar, S. N.; Evans, M., J. Phys. A: Math. Theor., 51 (2018) · Zbl 1407.60056 · doi:10.1088/1751-8121/aadef0
[61] Kumar, V.; Sadekar, O.; Basu, U., Phys. Rev. E, 102 (2020) · doi:10.1103/physreve.102.052129
[62] Gradenigo, G.; Majumdar, S. N., J. Stat. Mech. (2019) · Zbl 1457.82251 · doi:10.1088/1742-5468/ab11be
[63] Banerjee, T.; Majumdar, S. N.; Rosso, A.; Schehr, G., Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.052101
[64] Santra, I.; Basu, U.; Sabhapandit, S., Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.062120
[65] Le Doussal, P.; Majumdar, S. N.; Schehr, G., Europhys. Lett., 130, 40002 (2020) · doi:10.1209/0295-5075/130/40002
[66] Singh, P.; Sabhapandit, S.; Kundu, A., J. Stat. Mech. (2020) · Zbl 1459.60177 · doi:10.1088/1742-5468/aba7b1
[67] Slowman, A. B.; Evans, M. R.; Blythe, R. A., Phys. Rev. Lett., 116 (2016) · doi:10.1103/physrevlett.116.218101
[68] Slowman, A. B.; Evans, M.; Blythe, R., J. Phys. A: Math. Theor., 50 (2017) · Zbl 1378.92044 · doi:10.1088/1751-8121/aa80af
[69] Mallmin, E.; Blythe, R. A.; Evans, M. R., J. Stat. Mech. (2019) · Zbl 1539.82174 · doi:10.1088/1742-5468/aaf631
[70] Das, A.; Dhar, A.; Kundu, A., J. Phys. A: Math. Theor., 53 (2020) · Zbl 1506.82020 · doi:10.1088/1751-8121/ab9cf3
[71] Doussal, P. L.; Majumdar, S. N.; Schehr, G., Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.012113
[72] Cates, M. E. (2019)
[73] Teomy, E.; Metzler, R., J. Phys. A: Math. Theor., 52 (2019) · Zbl 1504.82046 · doi:10.1088/1751-8121/ab37e4
[74] Teomy, E.; Metzler, R., J. Stat. Mech. (2019) · Zbl 1457.82269 · doi:10.1088/1742-5468/ab47fb
[75] Galanti, M.; Fanelli, D.; Piazza, F., Eur. Phys. J. B, 86, 456 (2013) · doi:10.1140/epjb/e2013-40838-y
[76] Dolai, P.; Das, A.; Kundu, A.; Dasgupta, C.; Dhar, A.; Kumar, K. V., Soft Matter, 16, 7077-7087 (2020) · doi:10.1039/d0sm00687d
[77] Put, S.; Berx, J.; Vanderzande, C., J. Stat. Mech. (2019) · Zbl 1459.82193 · doi:10.1088/1742-5468/ab4e90
[78] Lizana, L.; Ambjörnsso, T.; Taloni, A.; Barkai, E.; Lomholt, M. A., Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.051118
[79] Samanta, N.; Chakrabarti, R., J. Phys. A: Math. Theor., 49 (2016) · Zbl 1342.92087 · doi:10.1088/1751-8113/49/19/195601
[80] Chaki, S.; Chakrabarti, R., J. Chem. Phys., 150 (2019) · doi:10.1063/1.5086152
[81] Vandebroek, H.; Vanderzande, C., Phys. Rev. E, 92 (2015) · doi:10.1103/physreve.92.060601
[82] Osmanović, D.; Rabina, Y., Soft Matter, 13, 963-968 (2017) · doi:10.1039/c6sm90197b
[83] Osmanović, D., J. Chem. Phys., 149 (2018) · doi:10.1063/1.5045686
[84] Caprini, L.; Marconi, U., Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.043359
[85] Solon, A. P.; Cates, M. E.; Tailleur, J., Eur. Phys. J. Spec. Top., 224, 1231 (2015) · doi:10.1140/epjst/e2015-02457-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.