×

Spectral content of fractional Brownian motion with stochastic reset. (English) Zbl 1407.60056

Summary: We analyse the power spectral density (PSD) \(S_{T}(f)\) (with \(T\) being the observation time and \(f\) the frequency) of a fractional Brownian motion (fBm), with an arbitrary Hurst index \(H \in (0,1)\), undergoing a stochastic resetting to the origin at a constant rate \(r\)–the resetting process introduced some time ago as an example of an efficient, optimisable search algorithm. To this end, we first derive an exact expression for the covariance function of an arbitrary (not necessarily a fBm) process with a reset, expressing it through the covariance function of the parental process without a reset, which yields the desired result for the fBm in a particular case. We then use this result to compute exactly the power spectral density for fBM for all frequency \(f\). The asymptotic, large frequency \(f\) behaviour of the PSD turns out to be distinctly different for sub-\((H < 1/2)\) and super-diffusive \((H > 1/2)\) fBms. We show that for large \(f\), the PSD has a power law tail: \(S_T(f) \sim 1/f^{\gamma}\) where the exponent \(\gamma = 2H + 1\; \text{for}\; 0 < H \leq 1/2\) (sub-diffusive fBm), while \(\gamma = 2\; \text{for all}\; 1/2 \leq H < 1\). Thus, somewhat unexpectedly, the exponent \(\gamma = 2\) in the superdiffusive case \(H > 1/2\) sticks to its Brownian value and does not depend on \(H\).

MSC:

60G22 Fractional processes, including fractional Brownian motion
60J60 Diffusion processes

References:

[1] Norton, M. P.; Karczub, D. G., Fundamentals of Noise and Vibration Analysis for Engineers, (2003), Cambridge: Cambridge University Press, Cambridge
[2] Voss, R.; Clarke, J., Nature, 258, 31, (1975) · doi:10.1038/258031a0
[3] Hennig, H.; Fleischmann, R.; Fredebohm, A.; Hagmayer, Y.; Nagler, J.; Witt, A.; Theis, F. J.; Geisel, T., PLoS One, 6, (2011) · doi:10.1371/annotation/0d903d46-1104-43b8-ae6b-4f2343bb3357
[4] Balandin, A. A., Nat. Nanotechnol., 8, 54, (2013) · doi:10.1038/nnano.2013.144
[5] Weber, R. O.; Talkner, P., J. Geophys. Res., 106, 20131, (2001) · doi:10.1029/2001JD000548
[6] Frantsuzov, P. A.; Volkán-Kacsó, S.; Jank, B., Nano Lett., 13, 402, (2013) · doi:10.1021/nl3035674
[7] Bénichou, O.; Krapivsky, P. L.; Mejía-Monasterio, C.; Oshanin, G., Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.080601
[8] Marinari, E.; Parisi, G.; Ruelle, D.; Windey, P., Phys. Rev. Lett., 50, 1223, (1983) · doi:10.1103/PhysRevLett.50.1223
[9] Dean, D. S.; Marinari, E.; Iorio, A.; Oshanin, G., Phys. Rev. E, 94, (2016) · doi:10.1103/PhysRevE.94.032131
[10] Sornette, A.; Sornette, D., Europhys. Lett., 9, 197, (1989) · doi:10.1209/0295-5075/9/3/002
[11] Krapf, D., Phys. Chem. Chem. Phys., 15, 459, (2013) · doi:10.1039/C2CP42838E
[12] Zorkot, M.; Golestanian, R.; Bonthuis, D. J., Nano Lett., 16, 2205, (2016) · doi:10.1021/acs.nanolett.5b04372
[13] Leibovich, N.; Barkai, E., Phys. Rev. E, 96, (2017) · doi:10.1103/PhysRevE.96.032132
[14] Krapf, D.; Marinari, E.; Metzler, R.; Oshanin, G.; Xu, X.; Squarcini, A., New J. Phys., 20, (2018) · Zbl 1540.60184 · doi:10.1088/1367-2630/aaa67c
[15] Mandelbrot, J. B B., SIAM Rev., 10, 422, (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[16] Evans, M. R.; Majumdar, S. N., Phys. Rev. Lett., 106, (2011) · doi:10.1103/PhysRevLett.106.160601
[17] Evans, M. R.; Majumdar, S. N., J. Phys. A: Math. Theor., 44, (2011) · Zbl 1465.60070 · doi:10.1088/1751-8113/44/43/435001
[18] Evans, M. R.; Majumdar, S. N., J. Phys. A: Math. Theor., 47, (2014) · Zbl 1312.60018 · doi:10.1088/1751-8113/47/45/455004
[19] Whitehouse, J.; Evans, M. R.; Majumdar, S. N., Phys. Rev. E, 87, (2013) · doi:10.1103/PhysRevE.87.022118
[20] Evans, M. R.; Majumdar, S. N.; Mallick, K., J. Phys. A: Math. Theor., 46, (2013) · Zbl 1267.82098 · doi:10.1088/1751-8113/46/18/185001
[21] Montero, M.; Villarroel, J., Phys. Rev. E, 87, (2013) · doi:10.1103/PhysRevE.87.012116
[22] Kusmierz, L.; Majumdar, S. N.; Sabhapandit, S.; Schehr, G., Phys. Rev. Lett., 113, (2014) · doi:10.1103/PhysRevLett.113.220602
[23] Gupta, S.; Majumdar, S. N.; Schehr, G., Phys. Rev. Lett., 112, (2014) · doi:10.1103/PhysRevLett.112.220601
[24] Majumdar, S. N.; Sabhapandit, S.; Schehr, G., Phys. Rev. E, 91, (2015) · doi:10.1103/PhysRevE.91.052131
[25] Majumdar, S. N.; Sabhapandit, S.; Schehr, G., Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.052126
[26] Pal, A., Phys. Rev. E, 91, (2015) · doi:10.1103/PhysRevE.91.012113
[27] Reuveni, S., Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.170601
[28] Nagar, A.; Gupta, S., Phys. Rev. E, 93, (2016) · doi:10.1103/PhysRevE.93.060102
[29] Boyer, D.; Evans, M. R.; Majumdar, S. N., J. Stat. Mech., (2017) · Zbl 1457.82230 · doi:10.1088/1742-5468/aa58b6
[30] Meylahn, J. M.; Sabhapandit, S.; Touchette, H., Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.062148
[31] Fuchs, J.; Goldt, S.; Seifert, U., Europhys. Lett., 113, 60009, (2016) · doi:10.1209/0295-5075/113/60009
[32] Eule, S.; Metzger, J. J., New J. Phys., 18, (2016) · Zbl 1457.82191 · doi:10.1088/1367-2630/18/3/033006
[33] Bhat, U.; De Bacco, C.; Redner, S., J. Stat. Mech., (2016) · Zbl 1456.60235 · doi:10.1088/1742-5468/2016/08/083401
[34] Harris, R. J.; Touchette, H., J. Phys. A: Math. Theor., 50, (2017) · Zbl 1362.82040 · doi:10.1088/1751-8121/aa5734
[35] den Hollander, F.; Majumdar, S. N.; Meylahn, J. M.; Touchette, H., (2018)
[36] Mukherjee, B.; Sengupta, K.; Majumdar, S. N., Phys. Rev. B, (2018)
[37] Rose, D. C.; Touchette, H.; Lesanovsky, I.; Garrahan, J. P., (2018)
[38] Friedman, H.; Kessler, D. A.; Barkai, E., Phys. Rev. E, 95, (2017) · doi:10.1103/PhysRevE.95.032141
[39] Thiel, F.; Barkai, E.; Kessler, D., Phys. Rev. Lett., 120, (2018) · doi:10.1103/PhysRevLett.120.040502
[40] Berg-Sørensen, K.; Flyvbjerg, H., Rev. Sci. Instrum., 75, 594, (2004) · doi:10.1063/1.1645654
[41] Flandrin, P., IEEE Trans. Inf. Theory, 35, 197, (1989) · doi:10.1109/18.42195
[42] Krapf, D.; Lukat, N.; Marinari, E.; Metzler, R.; Oshanin, G.; Selhuber-Unkel, C.; Squarcini, A.; Stadler, L.; Weiss, M.; Xu, X., Power spectral density of a single trajectory: quantifying an ensemble by its random elements, Nature Commun.
[43] Leibovich, N.; Dechant, A.; Lutz, E.; Barkai, E., Phys. Rev. E, 94, (2016) · doi:10.1103/PhysRevE.94.052130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.