×

Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. (English) Zbl 1392.74069

Summary: The coupled thermo-mechanical strain gradient plasticity theory that accounts for microstructure-based size effects is outlined within this work. It extends the recent work of C. Miehe et al. [Comput. Methods Appl. Mech. Eng. 268, 704–734 (2014; Zbl 1295.74014)] to account for thermal effects at finite strains. From the computational viewpoint, the finite element design of the coupled problem is not straightforward and requires additional strategies due to the difficulties near the elastic-plastic boundaries. To simplify the finite element formulation, we extend it toward the micromorphic approach to gradient thermo-plasticity model in the logarithmic strain space. The key point is the introduction of dual local-global field variables via a penalty method, where only the global fields are restricted by boundary conditions. Hence, the problem of restricting the gradient variable to the plastic domain is relaxed, which makes the formulation very attractive for finite element implementation as discussed in [S. Forest, “Micromorphic approach for gradient elasticity, viscoplasticity, and damage”, J. Eng. Mech. 135, No. 3, 117–131 (2009; doi:10.1061/(ASCE)0733-9399(2009)135:3(117))] and [C. Miehe et al., Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 374, No. 2066, Article ID 20150170, 18 p. (2016; Zbl 1353.74065)].

MSC:

74M25 Micromechanics of solids
74F05 Thermal effects in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
Full Text: DOI

References:

[1] Miehe, C; Welschinger, F; Aldakheel, F, Variational gradient plasticity at finite strains. part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space, Comput. Methods Appl. Mech. Eng., 268, 704-734, (2014) · Zbl 1295.74014 · doi:10.1016/j.cma.2013.07.015
[2] Forest, S, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech., 135, 117-131, (2009) · doi:10.1061/(ASCE)0733-9399(2009)135:3(117)
[3] Miehe, C., Teichtmeister, S., Aldakheel, F.: Phase-field modeling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150170 (2016). doi:10.1098/rsta.2015.0170 · Zbl 1353.74065
[4] Fleck, NA; Muller, GM; Ashby, MF; Hutchinson, JW, Strain gradient plasticity: theory and experiment, Acta Mater., 42, 475-487, (1994) · doi:10.1016/0956-7151(94)90502-9
[5] Borst, R; Mühlhaus, HB, Gradient-dependent plasticity: formulation and algorithmic aspects, Int. J. Numer. Methods Eng., 35, 521-539, (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[6] Liebe, T; Steinmann, P, Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity, Int. J. Numer. Methods Eng., 51, 1437-1467, (2001) · Zbl 1065.74516 · doi:10.1002/nme.195
[7] Engelen, RAB; Geers, MGD; Baaijens, FPT, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behavior, Int. J. Plast., 19, 403-433, (2003) · Zbl 1090.74519 · doi:10.1016/S0749-6419(01)00042-0
[8] Gurtin, E, A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations, Int. J. Plast., 24, 702-725, (2008) · Zbl 1131.74006 · doi:10.1016/j.ijplas.2007.07.014
[9] Svendsen, B; Bargmann, S, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation, J. Mech. Phys. Solids, 58, 1253-1271, (2010) · Zbl 1431.74028 · doi:10.1016/j.jmps.2010.06.005
[10] Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2012) · Zbl 1371.74061
[11] Klusemann, B; Yalcinkaya, T, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex Helmholtz energy, Int. J. Plast., 48, 168-188, (2013) · doi:10.1016/j.ijplas.2013.02.012
[12] Miehe, C; Mauthe, S; Hildebrand, FE, Variational gradient plasticity at finite strains. part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals, Comput. Methods Appl. Mech. Eng., 268, 735-762, (2014) · Zbl 1295.74012 · doi:10.1016/j.cma.2013.08.022
[13] Forest, S; Sievert, R, Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mech., 160, 71-111, (2003) · Zbl 1064.74009 · doi:10.1007/s00707-002-0975-0
[14] Gudmundson, P, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52, 1379-1406, (2004) · Zbl 1114.74366 · doi:10.1016/j.jmps.2003.11.002
[15] Anand, L; Aslan, O; Chester, SA, A large-deformation gradient theory for elastic-plastic materials: strain softening and regularization of shear bands, Int. J. Plast., 30-31, 116-143, (2012) · doi:10.1016/j.ijplas.2011.10.002
[16] Reddy, B; Ebobisse, F; McBride, A, Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, Int. J. Plast., 24, 55-73, (2008) · Zbl 1139.74009 · doi:10.1016/j.ijplas.2007.01.013
[17] Fleck, NA; Willis, JR, A mathematical basis for strain-gradient plasticity theory. part I: scalar plastic multiplier, J. Mech. Phys. Solids, 57, 161-177, (2009) · Zbl 1195.74020 · doi:10.1016/j.jmps.2008.09.010
[18] Fleck, NA; Willis, JR, A mathematical basis for strain-gradient plasticity theory. part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057, (2009) · Zbl 1173.74316 · doi:10.1016/j.jmps.2009.03.007
[19] Polizzotto, C, A nonlocal strain gradient plasticity theory for finite deformations, Int. J. Plast., 25, 1280-1300, (2009) · Zbl 1165.74012 · doi:10.1016/j.ijplas.2008.09.009
[20] Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 472 (2016) · Zbl 1371.74226
[21] Voyiadjis, GZ; Pekmezi, G; Deliktas, B, Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening, Int. J. Plast., 26, 1335-1356, (2010) · Zbl 1431.74033 · doi:10.1016/j.ijplas.2010.01.015
[22] Kuroda, M; Tvergaard, V, An alternative treatment of phenomenological higher-order strain-gradient plasticity theory, Int. J. Plast., 26, 507-515, (2010) · Zbl 1426.74059 · doi:10.1016/j.ijplas.2009.09.001
[23] Miehe, C; Aldakheel, F; Mauthe, S, Mixed variational principles and robust finite element implementations of gradient plasticity at small strains, Int. J. Numer. Methods Eng., 94, 1037-1074, (2013) · Zbl 1352.74408 · doi:10.1002/nme.4486
[24] Wriggers, P; Miehe, C; Kleiber, M; Simo, J, On the coupled thermomechanical treatment of necking problems via finite element methods, Int. J. Numer. Methods Eng., 33, 869-883, (1992) · Zbl 0760.73070 · doi:10.1002/nme.1620330413
[25] Anand, L; Ames, NM; Srivastava, V; Chester, SA, A thermo-mechanically coupled theory for large deformations of amorphous polymers. part I: formulation, Int. J. Plast., 25, 1474-1494, (2009) · Zbl 1165.74011 · doi:10.1016/j.ijplas.2008.11.004
[26] Canadija, M; Mosler, J, On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization, Int. J. Solids Struct., 48, 1120-1129, (2011) · Zbl 1236.74032 · doi:10.1016/j.ijsolstr.2010.12.018
[27] Yang, Q; Stainier, L; Ortiz, M, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, J. Mech. Phys. Solids, 54, 401-424, (2006) · Zbl 1120.74367 · doi:10.1016/j.jmps.2005.08.010
[28] Stainier, L; Ortiz, M, Study and validation of thermomechanical coupling in finite strain visco-plasticity, Int. J. Solids Struct., 47, 704-715, (2010) · Zbl 1183.74037 · doi:10.1016/j.ijsolstr.2009.11.012
[29] Voyiadjis, Z; Faghihi, D, Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, Int. J. Plast., 30-31, 218-247, (2012) · doi:10.1016/j.ijplas.2011.10.007
[30] Faghihi, D; Voyiadjis, Z; Park, T, Coupled thermomechanical modeling of small volume fcc metals, J. Eng. Mater. Technol., 135, 1-17, (2013) · doi:10.1115/1.4023771
[31] Forest, S; Aifantis, E, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int. J. Solids Struct., 47, 3367-3376, (2010) · Zbl 1203.74011 · doi:10.1016/j.ijsolstr.2010.07.009
[32] Bertram, A; Forest, S, The thermodynamics of gradient elastoplasticity, Contin. Mech. Thermodyn., 26, 269-286, (2014) · Zbl 1341.80005 · doi:10.1007/s00161-013-0300-2
[33] Wcislo, B; Pamin, J, Local and non-local thermomechanical modeling of elastic-plastic materials undergoing large strains, Int. J. Numer. Methods Eng., 109, 102-124, (2016) · Zbl 07874347 · doi:10.1002/nme.5280
[34] Miehe, C; Aldakheel, F; Teichtmeister, S, Phase-field modeling of ductile fracture at finite strains. A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Int. J. Numer. Methods Eng., (2016) · Zbl 1353.74065 · doi:10.1002/nme.5484
[35] Aldakheel, F.: Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. Ph.D. thesis, Institute of Applied Mechanics (CE), Chair I, University of Stuttgart (2016). doi:10.18419/opus-8803
[36] Aldakheel, F., Miehe, C.: Coupled thermomechanical response of gradient plasticity. Int. J. Plast. 91, 1-24 (2017) · Zbl 1114.74366
[37] Miehe, C; Apel, N; Lambrecht, M, Anisotropic additive plasticity in the logarithmic strain space. modularkinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Methods Appl. Mech. Eng., 191, 5383-5425, (2002) · Zbl 1083.74518 · doi:10.1016/S0045-7825(02)00438-3
[38] Geers, MGD; Peerlings, RHJ; Brekelmans, WAM; Borst, R, Phenomenological nonlocal approaches based on implicit gradient-enhanced damage, Acta Mech., 144, 1-15, (2000) · Zbl 0993.74006 · doi:10.1007/BF01181824
[39] Peerlings, RHJ; Geers, MGD; Borst, R; Brekelmans, WAM, A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., 38, 7723-7746, (2001) · Zbl 1032.74008 · doi:10.1016/S0020-7683(01)00087-7
[40] Peerlings, RHJ; Massart, TJ; Geers, MGD, A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking, Comput. Methods Appl. Mech. Eng., 193, 3403-3417, (2004) · Zbl 1060.74508 · doi:10.1016/j.cma.2003.10.021
[41] Simó, J; Miehe, C, Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Eng., 98, 41-104, (1992) · Zbl 0764.73088 · doi:10.1016/0045-7825(92)90170-O
[42] Boyce, MC; Montagut, EL; Argon, AS, The effects of thermomechanical coupling on the cold drawing process of glassy polymers, Polym. Eng. Sci., 32, 1073-1085, (1992) · doi:10.1002/pen.760321605
[43] Miehe, C; Lambrecht, M, Algorithms for computation of stresses and elasticity moduli in terms of seth-hill’s family of generalized strain tensors, Commun. Numer. Methods Eng., 17, 337-353, (2001) · Zbl 1049.74011 · doi:10.1002/cnm.404
[44] Hallquist, J.O.: Nike 2D: An implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA (1984)
[45] Simó, JC, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects, Comput. Methods Appl. Mech. Eng., 68, 1-31, (1988) · Zbl 0644.73043 · doi:10.1016/0045-7825(88)90104-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.