×

Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity. (English) Zbl 1065.74516

Summary: The paper presents the theory and the numerics of a thermodynamically consistent formulation of gradient plasticity at small strains. Starting from the classical local continuum formulation, which fails to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. The model is based on an assumption for Helmholtz free energy incorporating the gradient of internal history variable, a yield condition and the postulate of maximum dissipation resulting in an associated structure. As a result, the driving force conjugated to the hardening evolution is identified as the quasi-non-local drag stress which incorporates besides the strictly local drag stress essentially the divergence of a vectorial hardening flux. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex nonlinear programming. Moreover, different discretization techniques are proposed in order to compare the finite element performance in local plasticity with the advocated gradient formulation both for hardening and softening.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74A15 Thermodynamics in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Aifantis, Journal of Engineering Materials and Technology 106 pp 326– (1984) · doi:10.1115/1.3225725
[2] Aifantis, International Journal of Plasticity 3 pp 211– (1987) · Zbl 0616.73106 · doi:10.1016/0749-6419(87)90021-0
[3] Aifantis, International Journal of Engineering Science 30 pp 1279– (1992) · Zbl 0769.73058 · doi:10.1016/0020-7225(92)90141-3
[4] Steinmann, International Journal of Engineering Science 34 pp 1717– (1996) · Zbl 0905.73060 · doi:10.1016/S0020-7225(96)00062-6
[5] Menzel, Journal of the Mechanics and Physics of Solids 48 pp 1777– (2000) · Zbl 0999.74029 · doi:10.1016/S0022-5096(99)00024-1
[6] Zbib, Acta Mecanica 92 pp 209– (1992) · Zbl 0751.73022 · doi:10.1007/BF01174177
[7] Schreyer, ASME, Journal of Applied Mechanics 53 pp 791– (1986) · doi:10.1115/1.3171860
[8] Ba?ant, Journal of Applied Mechanics 55 pp 287– (1988) · Zbl 0663.73075 · doi:10.1115/1.3173674
[9] Lasry, International Journal of Solids and Structures 24 pp 581– (1988) · Zbl 0636.73021 · doi:10.1016/0020-7683(88)90059-5
[10] Mühlhaus, International Journal of Solids and Structures 28 pp 845– (1991) · Zbl 0749.73029 · doi:10.1016/0020-7683(91)90004-Y
[11] de Borst, International Journal for Numerical Methods in Engineering 35 pp 521– (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[12] Bifurcation and localization in rate-independent materials: some general considerations. CISM Lecture Notes, No. 327. Springer: Berlin, 1993; 1-44.
[13] Comi, Rendiconti della Scuola Istituto Lombardo A 130 pp 119– (1996)
[14] Comi, International Journal for Numerical Methods in Engineering 39 pp 3731– (1996) · Zbl 0894.73149 · doi:10.1002/(SICI)1097-0207(19961115)39:21<3731::AID-NME24>3.0.CO;2-Z
[15] Comi, International Journal of Solids and Structures 33 pp 3881– (1996) · Zbl 0921.73129 · doi:10.1016/0020-7683(95)00219-7
[16] de Borst, Journal of Physics IV 6 pp 491– (1996)
[17] Benallal, Journal of the Mechanics and Physics of Solids 43 pp 741– (1995) · Zbl 0878.73024 · doi:10.1016/0022-5096(95)00002-Z
[18] Strain gradient plasticity. In Advances in Applied Mechanics, (eds), Vol. 33, Academic Press: New York, 1997; 33:295-361. · Zbl 0894.73031
[19] Nedjar, International Journal of Solids and Structures (2001)
[20] Ganghoffer, International Journal of Engineering Science 38 pp 453– (2000) · Zbl 1213.74278 · doi:10.1016/S0020-7225(99)00030-0
[21] Pinsky, Computer Methods in Applied Mechanics and Engineering 61 pp 41– (1987) · Zbl 0591.73082 · doi:10.1016/0045-7825(87)90115-0
[22] Simo, Computer Methods in Applied Mechanics and Engineering 74 pp 177– (1989) · Zbl 0687.73064 · doi:10.1016/0045-7825(89)90102-3
[23] Florez-Lopez, Computer Methods in Applied Mechanics and Engineering 114 pp 193– (1994) · doi:10.1016/0045-7825(94)90171-6
[24] Sluys, International Journal of Solids and Structures 30 pp 1153– (1993) · Zbl 0771.73017 · doi:10.1016/0020-7683(93)90010-5
[25] Gradient-dependent plasticity in numerical simulation of localization phenomena. Dissertation, Delft University of Technology, Delft, 1994.
[26] de Borst, International Journal for Numerical Methods in Engineering 39 pp 2477– (1996) · Zbl 0885.73074 · doi:10.1002/(SICI)1097-0207(19960730)39:14<2477::AID-NME962>3.0.CO;2-E
[27] Peerlings, International Journal for Numerical Methods in Engineering 39 pp 3391– (1996) · Zbl 0882.73057 · doi:10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
[28] Peerlings, European Journal of Mechanics of A/Solids 15 pp 937– (1996)
[29] Steinmann, International Journal for Numerical Methods in Engineering 46 pp 757– (1999) · Zbl 0978.74006 · doi:10.1002/(SICI)1097-0207(19991020)46:5<757::AID-NME731>3.0.CO;2-N
[30] Comi, Mechanics of Cohesion-Friction of Materials 4 pp 17– (1999) · doi:10.1002/(SICI)1099-1484(199901)4:1<17::AID-CFM55>3.0.CO;2-6
[31] Chambon, European Journal of Mechanics of A/Solids 17 pp 637– (1998) · Zbl 0936.74020 · doi:10.1016/S0997-7538(99)80026-6
[32] Huerta, ASCE Journal of Engineering Mechanics 120 pp 1198– (1994) · doi:10.1061/(ASCE)0733-9399(1994)120:6(1198)
[33] Svedberg, Computer Methods in Applied Mechanics and Engineering 161 pp 49– (1998) · Zbl 0948.74054 · doi:10.1016/S0045-7825(97)00309-5
[34] On the modeling and numerics of gradient-regularized plasticity coupled to damage. Dissertation, Chalmers University of Technology, Göteborg, Sweden, 1999.
[35] Mikkelsen, International Journal of Solids and Structures 34 pp 4531– (1997) · Zbl 0939.74528 · doi:10.1016/S0020-7683(97)00039-5
[36] Kuhl, Computer Methods in Applied Mechanics and Engineering 183 pp 87– (2000) · Zbl 0992.74060 · doi:10.1016/S0045-7825(99)00213-3
[37] Mahnken, European Journal of Mechanics of A/Solids 18 pp 819– (1999) · Zbl 0966.74065 · doi:10.1016/S0997-7538(99)00127-8
[38] Ba?ant, Journal of Engineering Mechanics 117 pp 1070– (1991) · doi:10.1061/(ASCE)0733-9399(1991)117:5(1070)
[39] Polizzotto, European Journal of Mechanics of A/Solids 17 pp 741– (1998) · Zbl 0937.74013 · doi:10.1016/S0997-7538(98)80003-X
[40] Edelen, Archive for Rational Mechanics and Analysis (Springer) 43 pp 24– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.