×

An alternative treatment of phenomenological higher-order strain-gradient plasticity theory. (English) Zbl 1426.74059

Summary: Phenomenological higher-order strain-gradient plasticity is here presented through a formulation inspired by previous work for strain-gradient crystal plasticity. A physical interpretation of the phenomenological yield condition that involves an effect of second gradient of the equivalent plastic strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic strain. A connection between the present treatment and strain-gradient theories based on an extended virtual work principle is discussed. Furthermore, a numerical implementation and analysis of constrained simple shear of a thin strip are presented.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Al-Rub, R. K. Abu: Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals, International journal of plasticity 24, 1277-1306 (2008) · Zbl 1388.74077
[2] Al-Rub, R. K. Abu; Voyiadjis, G. Z.; Bammann, D. J.: A thermodynamic based higher-order gradient theory for size dependent plasticity, International journal of solids and structures 44, 2888-2923 (2007) · Zbl 1121.74011 · doi:10.1016/j.ijsolstr.2006.08.034
[3] Acharya, A.; Bassani, J. L.: Lattice incompatibility and a gradient theory of crystal plasticity, Journal of the mechanics and physics of solids 48, 1565-1595 (2000) · Zbl 0963.74010 · doi:10.1016/S0022-5096(99)00075-7
[4] Aifantis, E. C.: On the microstructural origin of certain inelastic models, Journal of engineering materials and technology 106, 326-330 (1984)
[5] Arsenlis, A.; Parks, D. M.; Becker, R.; Bulatov, V. V.: On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals, Journal of the mechanics and physics of solids 52, 1213-1246 (2004) · Zbl 1079.74523 · doi:10.1016/j.jmps.2003.12.007
[6] Ashby, M. F.: The deformation of plastically non-homogeneous materials, Philosophical magazine 21, 399-424 (1970)
[7] Bardella, L.: A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations, Journal of the mechanics and physics of solids 54, 128-160 (2006) · Zbl 1120.74387 · doi:10.1016/j.jmps.2005.08.003
[8] Bardella, L.: Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved, International journal of plasticity 23, 296-322 (2007) · Zbl 1127.74319 · doi:10.1016/j.ijplas.2006.05.004
[9] Bassani, J. L.: Incompatibility and a simple gradient theory of plasticity, Journal of the mechanics and physics of solids 49, 1983-1996 (2001) · Zbl 1030.74015 · doi:10.1016/S0022-5096(01)00037-0
[10] Bayley, C. J.; Brekelmans, W. A. M.; Geers, M. G. D.: A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, International journal of solids and structures 43, 7268-7286 (2006) · Zbl 1102.74009 · doi:10.1016/j.ijsolstr.2006.05.011
[11] Borg, U.: Strain gradient crystal plasticity effects on flow localization, International journal of plasticity 23, 1400-1416 (2007) · Zbl 1134.74326 · doi:10.1016/j.ijplas.2007.01.003
[12] Brinckmann, S.; Siegmund, T.; Huang, Y.: A dislocation density based strain gradient model, International journal of plasticity 22, 1784-1797 (2006) · Zbl 1294.74019
[13] Cottrell, A. H.: Dislocation and plastic flow in crystals, (1952)
[14] Engelen, R. A. B.; Fleck, N. A.; Peerlings, R. H. J.; Geers, M. G. D.: An evaluation of higher-order plasticity theories for predicting size effects and localisation, International journal of solids and structures 43, 1857-1877 (2006) · Zbl 1121.74330 · doi:10.1016/j.ijsolstr.2004.05.072
[15] Evers, L. P.; Brekelmans, W. A. M.; Geers, M. G. D.: Non-local crystal plasticity model with intrinsic SSD and GND effects, Journal of the mechanics and physics of solids 52, 2379-2401 (2004) · Zbl 1115.74313 · doi:10.1016/j.jmps.2004.03.007
[16] Fleck, N. A.; Hutchinson, J. W.: Strain gradient plasticity, Advances in applied mechanics 33, 295-361 (1997) · Zbl 0894.73031
[17] Fleck, N. A.; Hutchinson, J. W.: A reformulation of strain gradient plasticity, Journal of the mechanics and physics of solids 49, 2245-2271 (2001) · Zbl 1033.74006 · doi:10.1016/S0022-5096(01)00049-7
[18] Fleck, N. A.; Willis, J. R.: A mathematical basis for strain-gradient plasticity theory. Part I. Scalar plastic multiplier, Journal of the mechanics and physics of solids 57, 161-177 (2009) · Zbl 1195.74020 · doi:10.1016/j.jmps.2008.09.010
[19] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W.: Strain gradient plasticity: theory and experiment, Acta matetallurgica et materialia 42, 475-487 (1994)
[20] Geers, M. G. D.; Brekelmans, W. A. M.; Bayley, C. J.: Second-order crystal plasticity: internal stress effects and cyclic loading, Modelling and simulation in materials science and engineering 15, S133-S145 (2007)
[21] Groma, I.; Csikor, F. F.; Zaiser, M.: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta materialia 51, 1271-1281 (2003)
[22] Gudmundson, P.: A unified treatment of strain gradient plasticity, Journal of the mechanics and physics of solids 52, 1379-1406 (2004) · Zbl 1114.74366 · doi:10.1016/j.jmps.2003.11.002
[23] Gurtin, M. E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients, Journal of the mechanics and physics of solids 48, 989-1036 (2000) · Zbl 0988.74021 · doi:10.1016/S0022-5096(99)00059-9
[24] Gurtin, M. E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the mechanics and physics of solids 50, 5-32 (2002) · Zbl 1043.74007 · doi:10.1016/S0022-5096(01)00104-1
[25] Gurtin, M. E.; Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations, Journal of the mechanics and physics of solids 53, 1624-1649 (2005) · Zbl 1120.74353 · doi:10.1016/j.jmps.2004.12.008
[26] Gurtin, M. E.; Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of aifantis and fleck and Hutchinson and their generalization, Journal of the mechanics and physics of solids 57, 405-421 (2009) · Zbl 1170.74311 · doi:10.1016/j.jmps.2008.12.002
[27] Huang, Y.; Qu, S.; Hwang, K. C.; Li, M.; Gao, H.: A conventional theory of mechanism-based strain gradient plasticity, International journal of plasticity 20, 753-782 (2004) · Zbl 1254.74019
[28] Kuroda, M.: Roles of plastic spin in shear banding, International journal of plasticity 12, 671-693 (1996) · Zbl 0884.73026 · doi:10.1016/S0749-6419(96)00024-1
[29] Kuroda, M.; Tvergaard, V.: Studies of scale dependent crystal viscopalsticity models, Journal of the mechanics and physics of solids 54, 1789-1810 (2006) · Zbl 1120.74397 · doi:10.1016/j.jmps.2006.04.002
[30] Kuroda, M.; Tvergaard, V.: On the formulations of higher-order strain gradient crystal plasticity, Journal of the mechanics and physics of solids 56, 1591-1608 (2008) · Zbl 1171.74332 · doi:10.1016/j.jmps.2007.07.015
[31] Lele, S. P.; Anand, L.: A large-deformation strain-gradient theory for isotropic viscoplastic materials, International journal of plasticity 25, 420-453 (2009) · Zbl 1277.74009
[32] Mühlhaus, H. B.; Aifantis, E. C.: A variational principle for gradient plasticity, International journal of solids and structures 28, 845-857 (1991) · Zbl 0749.73029 · doi:10.1016/0020-7683(91)90004-Y
[33] Polizzotto, C.: A link between the residual-based gradient plasticity theory and the analogous theories based on the virtual work principle, International journal of plasticity 25, 2169-2180 (2009)
[34] Stölken, J. S.; Evans, A. G.: A microbend test method for measuring the plasticity length scale, Acta materialia 46, 5109-5115 (1998)
[35] Suzuki, K.; Matsuki, Y.; Masaki, K.; Sato, M.; Kuroda, M.: Tensile and microbend tests of pure aluminum foils with different thicknesses, Materials science and engineering A 513 – 514, 77-82 (2009)
[36] Tomita, Y.; Fujimoto, T.: Plane-strain flow localization in tension blocks obeying strain-gradient-dependent constitutive equation, Materials science research international 1, No. 4, 254-259 (1995)
[37] Yefimov, S.; Groma, I.; Van Der Giessen, E.: A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations, Journal of the mechanics and physics of solids 52, 279-300 (2004) · Zbl 1106.74331 · doi:10.1016/S0022-5096(03)00094-2
[38] Zhang, F.; Saha, R.; Huang, Y.; Nix, W. D.; Hwang, K. C.; Qu, S.; Li, M.: Indentation of a hard film on a soft substrate: strain gradient hardening effects, International journal of plasticity 23, 25-43 (2007) · Zbl 1266.74032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.