×

Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter. (English) Zbl 1533.37132

The author considers two linear Hamiltonian differential systems with Dirichlet boundary conditions and depending on a parameter \(\lambda\). The relative oscillation theorem relates the difference of the numbers of finite eigenvalues of the two problems in the intervals \((-\infty, \beta]\) and \((-\infty, \alpha]\) with the so-called oscillation numbers associated with the Wronskian of the principal solutions of the systems evaluated for \(\lambda=\alpha\) and \(\lambda=\beta\). For the proofs the author drops the assumptions on controllability and normality and also omits the Legendre condition (convexity of the quadratic form in the Legendre transformation).
As a corollary to the general main result the author proves the renormalized oscillation theorems presenting the number of finite eigenvalues of one single problem in \((\alpha, \beta]\).
The article is written in a straightforward way without too many explanations and requires a quite high level of familiarity with the used concepts (index theory, (dual) comparative indices).

MSC:

37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
37J06 General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
Full Text: DOI

References:

[1] A. A.Abramov, On the computation of the eigenvalues of a nonlinear spectral problem for Hamiltonian systems of ordinary differential equations, Comput. Math. Math. Phys.41 (2001), no. 1, 27-36. · Zbl 1048.34135
[2] M.Bohner, W.Kratz, and R.Šimon Hilscher, Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter, Math. Nachr.285 (2012), no. 11-12, 1343-1356. · Zbl 1254.34119
[3] B.Booss‐Bavnbek and K.Furutani, The Maslov index: a functional analytical definition and the spectral flow formula, Tokyo J. Math.21 (1998), no. 1, 1-34. · Zbl 0932.37063
[4] B.Booss‐Bavnbek and C.Zhu, The Maslov index in symplectic Banach spaces, vol. 252, American Mathematical Society, RI2018, no. 1201, x+118 pp. · Zbl 07000096
[5] S. E.Cappell, R.Lee, and E. Y.Miller, On the Maslov index, Comm. Pure Appl. Math.47 (1994), no. 2, 121-186. · Zbl 0805.58022
[6] O.Došlý, Relative oscillation of linear Hamiltonian differential systems, Math. Nachr.290 (2017), no. 14‐15, 2234-2246. · Zbl 1376.34032
[7] O.Došlý, J.Elyseeva, and R.Šimon Hilscher, Symplectic difference systems: oscillation and spectral theory. Pathways in Mathematics, Birkhäuser, Cham2019. · Zbl 1425.39001
[8] Yu.Eliseeva, Comparative index for solutions of symplectic difference systems, Differ. Equ.45 (2009), 445-459. · Zbl 1182.39007
[9] J.Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index, J. Math. Anal. Appl.444 (2016), 1260-1273. · Zbl 1356.34039
[10] J.Elyseeva, Oscillation theorems for linear Hamiltonian systems with nonlinear dependence on the spectral parameter and the comparative index, Appl. Math. Lett.90 (2019), 15-22. · Zbl 1406.37046
[11] J.Elyseeva, Relative oscillation of linear Hamiltonian differential systems without monotonicity, Appl. Math. Lett.103 (2020), 202005. · Zbl 1447.34035
[12] J.Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian systems without monotonicity, Monatsh. fur Math.193 (2020), 305-328. · Zbl 1448.37062
[13] J.Elyseeva, Renormalized oscillation theory for symplectic eigenvalue problems with nonlinear dependence on the spectral parameter, J. Differ. Equ. Appl.26 (2020), no. 4, 458-487. · Zbl 1458.39004
[14] J.Elyseeva, P.Šepitka, and R.Šimon Hilscher, Oscillation numbers for continuous Lagrangian paths and Maslov index, 2022, 1-32.
[15] F.Gesztesy, B.Simon, and G.Teschl, Zeros of the Wronskian and renormalized oscillation theory, Am. J. Math.118 (1996), 571-594. · Zbl 0858.47027
[16] F.Gesztesy and M.Zinchenko, Renormalized oscillation theory for Hamiltonian systems, Adv. Math.311 (2017), 569-597. · Zbl 1381.34050
[17] P.Howard, Y.Latushkin, and A.Sukhtayev, The Maslov index for Lagrangian pairs on \({\mathbb{R}}^{2n} \), J. Math. Anal. Appl.451 (2017), no. 2, 794-821. · Zbl 1377.35073
[18] P.Howard and A.Sukhtayev, Renormalized oscillation theory for linear Hamiltonian systems on [0, 1] via the Maslov Index, J. Dyn. Differ. Equ. (2022), 1-42. arXiv:1808.08264 [math.CA].
[19] R.Johnson, R.Obaya, R., S.Novo, C.Núñez, and R.Fabbri, Nonautonomous linear Hamiltonian systems: oscillation, spectral theory and control, Developments in Mathematics, Springer, Switzerland36 (2016). · Zbl 1417.93011
[20] W.Kratz, Quadratic functionals in variational analysis and control theory. Mathematical Topics, vol. 6, Akademie, Berlin, 1995. · Zbl 0842.49001
[21] W.Kratz, Definiteness of quadratic functionals, Analysis (Munich)23 (2003), no. 2, 163-183. · Zbl 1070.49014
[22] W.Kratz and R.Šimon Hilscher, Rayleigh principle for linear Hamiltonian systems without controllability, ESAIM Control Optim. Calc. Var.18 (2012), 501-519. · Zbl 1254.34120
[23] H.Krüger and G.Teschl, Relative oscillation theory, weighted zeros of the Wronskian, and the spectral shift functions, Commun. Math. Phys.287 (2009), 613-640. · Zbl 1186.47009
[24] H.Krüger, G.Teschl, Relative oscillation theory for Sturm‐Liouville operators extended, J. Funct. Anal.254 (2008), 1702-1720. · Zbl 1144.34014
[25] W. T.Reid, Sturmian theory for ordinary differential equations, Applied Mathematical Sciences, Springer, NY, 31 (1980). · Zbl 0459.34001
[26] J.Robbin and D.Salamon, The Maslov index for paths, Topology32 (1993), no. 4, 827-844. · Zbl 0798.58018
[27] F. S.Rofe‐Beketov and A. M.Kholkin, Spectral analysis of differential operators: interplay between spectral and oscillatory properties, World Scientific, Singapore, 2005. · Zbl 1090.47030
[28] P.Šepitka and R.Šimon Hilscher, Comparative index and Sturmian theory for linear Hamiltonian systems, J. Differ. Equ.262 (2017), 914-944. · Zbl 1375.34052
[29] P.Šepitka and R.Šimon Hilscher, Focal points and principal solutions of linear Hamiltonian systems revisited, J. Differ. Equ.264 (2018), no. 9, 5541-5576. · Zbl 1394.34061
[30] P.ŠepitkaandR.Šimon Hilscher, Comparative index and Lidskii angles for symplectic matrices,Linear Algebra Appl.624(2021),174-197. · Zbl 1467.37055
[31] R.Šimon Hilscher, Sturmian theory for linear Hamiltonian systems without controllability, Math. Nachr.284 (2011), no. 7, 831-843. · Zbl 1218.34038
[32] R.Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, Discrete and Continuous Dynamical systems (2011), 684-691. · Zbl 1306.34051
[33] M.Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems, Int. J. Differ. Equ.2 (2007), no. 2, 221-244.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.