×

Relative oscillation theory, weighted zeros of the Wronskian, and the spectral shift function. (English) Zbl 1186.47009

An analog of classical oscillation theory is developed to measure the difference between the spectrum of two Sturm-Liouville operators. These operators \(H_j\), \(j=0,1\) have symbols \(\tau_j u=r^{-1}[(pu')'+q_ju]\), \(j=0,1\), on \(L^2((a,b),r \,dx)\), where \(p^{-1},r,q_0,q_1 \in L^{1}_{\text{loc}}(a,b)\), \(-\infty \leq a<b\leq \infty\), and boundary conditions for \(H_0\) and \(H_1\), if any, must be separated. The authors consider the (modified) Wronskian \(W_x(u_0,u_1)=u_0(x) p(x) u_1'(x)-p(x) u_0'(x) u_1(x)\), where \(u_j\), \(j=0,1\), are solutions of \(\tau_j u_j= \lambda_j u_j\).
Intuitively, one defines \(\#_{(a,b)}(u_0,u_1)\) to be the number of sign changes in \((a,b)\) of \(W_x(u_0,u_1)\) weighted so that a sign change counts as \(+1\) if \(q_0-\lambda_0r-(q_1-\lambda_1r)>0\) in a neighborhood of the sign change and is \(-1\) otherwise; moreover, \(\#_{(a,b)}(u_0,u_0)=-1\). This intuitive definition is inadequate for general \(q_j \in L^{1}_{\text{loc}}\); the general definition involves Prüfer variables. Significantly, \(\#_{(a,b)}(u_0,u_1)\) plays the role that the number of zeroes of solutions do in the classical Sturm-Liouville theory.
In order to state a result, some preparation is needed: let \(\psi_{0,-}(\lambda)\) be a solution \((\tau_0-\lambda)\psi_{0,-}(\lambda)=0\) which is \(L^2\) near \(a\) and satisfies any boundary condition at \(a\). Similarly, there is a solution \(\psi_{0,+}(\lambda)\) near \(b\); \(\psi_{1,\pm}(\lambda)\) are defined in the obvious manner. Recall that an endpoint is said to be regular for \(H_0\), if that \(p^{-1},r,q_0\) are integrable near the endpoint.
In the case of regular endpoints, the following result is proved: Suppose that \(H_0\) and \(H_1\) have the same boundary conditions at \(a\) and \(b\). Then
\[ \dim(P_{(-\infty,\lambda_1)}(H_1))-\dim(P_{(-\infty,\lambda_0]}(H_0))=\#_{(a,b)}(\psi_{0,\pm}(\lambda_0),\psi_{1,\mp}(\lambda_1)), \]
where \(P_{\Delta}(H_j)\), \(j=1,2\), denotes the spectral projection for \(H_j\) corresponding to \(\Delta \subseteq \mathbb{R}\).
The case where \(a\) and \(b\) need not be regular is also discussed, as is the case of spectral projections onto an interval \(\Delta\) whose closure avoids the essential spectrum of \(H_0\). Additionally, a result showing how the Krein spectral shift function \(\xi(\lambda)\) is related to \(\#_{(a,b)}(\psi_{0,\pm}(\lambda),\psi_{1,\mp}(\lambda))\) is established.

MSC:

47A55 Perturbation theory of linear operators
47E05 General theory of ordinary differential operators
34L05 General spectral theory of ordinary differential operators
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34B24 Sturm-Liouville theory
47A10 Spectrum, resolvent
34D10 Perturbations of ordinary differential equations

References:

[1] Birman M.Sh.: On the spectrum of singular boundary value problems. AMS Translations (2) 53, 23–80 (1966) · Zbl 0174.42502
[2] Eastham M.S.P.: The spectral theory of periodic differential equations. Scottish Academic Press, Edinburgh (1973) · Zbl 0287.34016
[3] Gesztesy F., Simon B.: A short proof of Zheludev’s theorem. Trans. Am. Math. Soc. 335, 329–340 (1993) · Zbl 0770.34056 · doi:10.2307/2154271
[4] Gesztesy F., Ünal M.: Perturbative oscillation criteria and Hardy-type inequalities. Math. Nachr. 189, 121–144 (1998) · Zbl 0903.34030 · doi:10.1002/mana.19981890108
[5] Gesztesy F., Simon B., Teschl G.: Zeros of the Wronskian and renormalized oscillation Theory. Am. J. Math. 118, 571–594 (1996) · Zbl 0858.47027 · doi:10.1353/ajm.1996.0024
[6] Gohberg I., Goldberg S., Krupnik N.: Traces and Determinants of Linear Operators. Birkhäuser, Basel (2000) · Zbl 0946.47013
[7] Hartman P.: Differential equations with non-oscillatory eigenfunctions. Duke Math. J. 15, 697–709 (1948) · Zbl 0031.30606 · doi:10.1215/S0012-7094-48-01559-2
[8] Hartman P.: A characterization of the spectra of one-dimensional wave equations. Am. J. Math. 71, 915–920 (1949) · Zbl 0035.18303 · doi:10.2307/2372376
[9] Hartman P., Putnam C.R.: The least cluster point of the spectrum of boundary value problems. Am. J. Math. 70, 849–855 (1948) · Zbl 0035.18304 · doi:10.2307/2372216
[10] Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1966) · Zbl 0148.12601
[11] Kneser A.: Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 42, 409–435 (1893) · JFM 25.0522.01 · doi:10.1007/BF01444165
[12] Khryashchev S.V.: Discrete spectrum for a periodic Schrödinger operator perturbed by a decreasing potential. Operator Theory: Adv. and Appl. 46, 109–114 (1990) · Zbl 0718.35068
[13] Krein M.G.: Perturbation determinants and a formula for the traces of unitary and self-adjoint operators. Sov. Math. Dokl. 3, 707–710 (1962) · Zbl 0191.15201
[14] Krüger H., Teschl G.: Relative oscillation theory for Sturm–Liouville operators extended. J. Funct. Anal. 254-6, 1702–1720 (2008) · Zbl 1144.34014 · doi:10.1016/j.jfa.2007.10.007
[15] Krüger, H., Teschl, G.: Effective Prüfer angles and relative oscillation criteria. J. Differ. Eqs. doi: 10.1016/j.jde.2008.06.004 , http://arxiv.org/abs/0709.0127v2[math.SP] , 2007 · Zbl 1167.34009
[16] Leighton W.: On self-adjoint differential equations of second order. J. London Math. Soc. 27, 37–47 (1952) · Zbl 0048.06503 · doi:10.1112/jlms/s1-27.1.37
[17] Reed M., Simon B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975) · Zbl 0308.47002
[18] Rofe-Beketov F.S.: A test for the finiteness of the number of discrete levels introduced into gaps of a continuous spectrum by perturbations of a periodic potential. Soviet Math. Dokl. 5, 689–692 (1964) · Zbl 0117.06004
[19] Rofe-Beketov F.S.: Spectral analysis of the Hill operator and its perturbations. FunkcionalÕnyï analiz 9, 144–155 (1977) (Russian) · Zbl 0449.34013
[20] Rofe-Beketov, F.S.: A generalisation of the Prüfer transformation and the discrete spectrum in gaps of the continuous one. In: Spectral Theory of Operators, Baku: Elm, 1979 (Russian), pp.146–153 · Zbl 0439.34024
[21] Rofe-Beketov, F.S. Spectrum perturbations, the Kneser-type constants and the effective masses of zones-type potentials, Constructive Theory of Functions 84, (Sofia, 1984), Sofia: Verna, pp. 757–766 · Zbl 0595.47009
[22] Rofe-Beketov F.S.: Kneser constants and effective masses for band potentials. Sov. Phys. Dokl. 29, 391–393 (1984) · Zbl 0597.34016
[23] Rofe-Beketov F.S., Kholkin A.M.: Spectral analysis of differential operators. Interplay between spectral and oscillatory properties. Hackensack, World Scientific (2005) · Zbl 1090.47030
[24] Schmidt K.M.: Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators. Commun. Math. Phys. 211, 465–485 (2000) · Zbl 0953.34069 · doi:10.1007/s002200050822
[25] Schmidt K.M.: Relative oscillation non-oscillation criteria for perturbed periodic Dirac systems. J. Math. Anal. Appl. 246, 591–607 (2000) · Zbl 0977.34076 · doi:10.1006/jmaa.2000.6821
[26] Schmidt K.M.: An application of Gesztesy-Simon-Teschl oscillation theory to a problem in differential geometry. J. Math. Anal. Appl. 261, 61–71 (2001) · Zbl 0997.53005 · doi:10.1006/jmaa.2001.7471
[27] Simon B.: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, NJ (1971) · Zbl 0232.47053
[28] Simon B.: Trace Ideals and Their Applications. 2nd ed. Providence, RI, Amer. Math. Soc., (2005) · Zbl 1074.47001
[29] Simon, B.: Spectral Analysis of Rank One Perturbations and Applications. Lecture notes from Vancouver Summer School in Mathematical Physics, August 10–14, 1993, CRM Proc. 8, Providence, RI: Amer. Math. Soc., 1994
[30] Simon, B.: Sturm oscillation and comparison theorems. In: Sturm–Liouville Theory: Past and Present (eds. Amrein, W., Hinz, A., Pearson, D.), Basel: Birkhäuser, 2005, pp. 29–43 · Zbl 1117.39013
[31] Stolz G., Weidmann J.: Approximation of isolated eigenvalues of ordinary differential operators. J. Reine und Angew. Math. 445, 31–44 (1993) · Zbl 0781.34052
[32] Sturm J.C.F.: Mémoire sur les équations différentielles linéaires du second ordre. J. Math. Pures Appl. 1, 106–186 (1836)
[33] Teschl G.: Oscillation theory and renormalized oscillation theory for Jacobi operators. J. Diff. Eqs. 129, 532–558 (1996) · Zbl 0866.39002 · doi:10.1006/jdeq.1996.0126
[34] Teschl G.: Renormalized oscillation theory for Dirac operators. Proc. Amer. Math. Soc. 126, 1685–1695 (1998) · Zbl 0894.34080 · doi:10.1090/S0002-9939-98-04310-X
[35] Teschl G.: Jacobi Operators and Completely Integrable Nonlinear Lattices Math. Surv. and Mon. 72. Providence, RI, Amer. Math. Soc., (2000) · Zbl 1056.39029
[36] Teschl G.: On the approximation of isolated eigenvalues of ordinary differential operators. Proc. Amer. Math. Soc. 136, 2473–2476 (2008) · Zbl 1156.34076 · doi:10.1090/S0002-9939-08-09140-5
[37] Teschl, G.: Relative oscillation theory for Dirac operators. In preparation · Zbl 1205.47006
[38] Teschl, G.: Relative oscillation theory for Jacobi operators. In preparation. · Zbl 0866.39002
[39] Walter W.: Ordinary Differential Equations. Springer, New York (1998) · Zbl 0991.34001
[40] Weidmann J.: Zur Spektraltheorie von Sturm–Liouville–Operatoren. Math. Z. 98, 268–302 (1967) · Zbl 0168.12301 · doi:10.1007/BF01112407
[41] Weidmann J.: Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math. Z. 119, 349–373 (1971) · Zbl 0206.10002 · doi:10.1007/BF01109887
[42] Weidmann J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics, 1258. Springer, Berlin (1987) · Zbl 0647.47052
[43] Weidmann, J.: Spectral theory of Sturm–Liouville operators; approximation by regular problems. In: Sturm–Liouville Theory: Past and Present (eds. Amrein, W., Hinz, A., Pearson, D.), Basel: Birkhäuser, 2005, pp. 29–43 · Zbl 1098.34065
[44] Yafaev D.R.: Mathematical Scattering Theory: General Theory. Providence, RI, Amer. Math. Soc., (1992) · Zbl 0761.47001
[45] Zettl A.: Sturm–Liouville Theory. Providence, RI, Amer. Math. Soc., (2005) · Zbl 1103.34001
[46] Zheludev, V.A., Perturbation of the spectrum of the one-dimensional self-adjoint Schrödinger operator with a periodic potential. Topics in Mathematical Physics, Vol. 4, Birman, M.Sh. (ed), New York: Consultants Bureau, 1971, pp. 55–76
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.