×

Chaotic behaviour of fractional predator-prey dynamical system. (English) Zbl 1489.92119

Summary: In this endeavour, Bernstein wavelet and Euler methods are used to solve a nonlinear fractional predator-prey biological model of two species. The theoretical results with their corresponding biological consequence due to Bernstein wavelet are considered and discussed. A test problem of predator-prey model with two different cases are examined to determined the capability of our proposed methods. We showed that the obtained solutions are the most powerful and, wherever it is possible the comparison, in a very good coincidence with the other numerical solution. Few numerical simulations are finding for predator and prey populations and new chaotic behaviours of predator-prey population model are also obtained by using the Euler method. Moreover, a comparison have been done between the capability of the Bernstein wavelet and the Euler approach. The numerical simulations and behaviours of Rabies model are depicted through graphically which is a special case of predator-prey model.

MSC:

92D25 Population dynamics (general)
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] Walker, J. S., A primer on wavelets and their scientific applications (2002), CRC Press
[2] Benedetto, J. J., Wavelets: mathematics and applications, 13 (1993), CRC Press
[3] Chui, C. K., Wavelets: a mathematical tool for signal analysis, 1 (1997), SIAM · Zbl 0903.94007
[4] Gopalakrishnan, S.; Mitra, M., Wavelet methods for dynamical problems: with application to metallic, composite, and nano-composite structures (2010), CRC Press
[5] Wang, Y.; Fan, Q., The second kind Chebyshev wavelet method for solving fractional differential equations, Appl Math Comput, 218, 17, 8592-8601 (2012) · Zbl 1245.65090
[6] Wu, J., A wavelet operational method for solving fractional partial differential equations numerically, Appl Math Comput, 214, 1, 31-40 (2009) · Zbl 1169.65127
[7] Cattani, C.; Ciancio, A., Hybrid two scales mathematical tools for active particles modelling complex systems with learning hiding dynamics, Math Models Methods Appl Sci, 17, 2, 171-187 (2007) · Zbl 1142.82019
[8] Cattani, C.; Ciancio, A., Qualitative analysis of second-order models of tumor-immune system competition, Math Comput Model, 47, 11-12, 1339-1355 (2008) · Zbl 1145.34303
[9] Pervaiz, N.; Aziz, I., Haar wavelet approximation for the solution of cubic nonlinear schrodinger equations, Phys A, 545, 1, 123738 (2019)
[10] Erfanian, M.; Mansoori, A., Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet, Math Comput Simul, 165, 223-237 (2019) · Zbl 1540.65193
[11] Sohaib, M.; Haq, S.; Mukhtar, S.; Khan, I., Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method, Results Phys, 8, 1204-1208 (2018)
[12] Yousefi, S.; Razzaghi, M., Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations, Math Comput Simul, 70, 1, 1-8 (2005) · Zbl 1205.65342
[13] Zhu, L.; Fan, Q., Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun Nonlinear Sci Numer Simul, 17, 6, 2333-2341 (2012) · Zbl 1335.45002
[14] Heydari, M.; Mahmoudi, M.; Shakiba, A.; Avazzadeh, Z., Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun Nonlinear Sci Numer Simul, 64, 98-121 (2018) · Zbl 1506.65020
[15] Shiralashetti, S.; Kumbinarasaiah, S., Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alex Eng J, 57, 4, 2591-2600 (2018)
[16] Iqbal, M. A.; Saeed, U.; MohyudDin, S. T., Modified Laguerre wavelets method for delay differential equations of fractional-order, Egypt J Basic Appl Sci, 2, 1, 50-54 (2015)
[17] Kumar, S.; Kumar, R.; Singh, J.; Nisar, K.; Kumar, D., An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-Cells with the effect of antiviral drug therapy, Alex Eng J (2020)
[18] Rostamy, D.; Karimi, K., Bernstein polynomials for solving fractional heat-and wave-like equations, Fract Calc Appl Anal, 15, 4, 556-571 (2012) · Zbl 1312.65168
[19] Abdelhamid, B.; Abdelmalek, K., Bernstein polynomials based-solution for linear fractional differential equations, AIP Conference proceedings, 2183, 70002 (2019), AIP Publishing
[20] Asgari, M.; Ezzati, R., Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order, Appl Math Comput, 307, 290-298 (2017) · Zbl 1411.65162
[21] Baseri, A.; Babolian, E.; Abbasbandy, S., Normalized Bernstein polynomials in solving space-time fractional diffusion equation, Adv Differ Equ, 2017, 1, 346 (2017) · Zbl 1444.65057
[22] Yousefi, S.; Behroozifar, M., Operational matrices of Bernstein polynomials and their applications, Int J Syst Sci, 41, 6, 709-716 (2010) · Zbl 1195.65061
[23] Javadi, S.; Babolian, E.; Taheri, Z., Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials, J Comput Appl Math, 303, 1-14 (2016) · Zbl 1382.65189
[24] Doha, E. H.; Bhrawy, A.; Saker, M., Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations, Appl Math Lett, 24, 4, 559-565 (2011) · Zbl 1236.65091
[25] Yüzbaşı, Ş., Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Appl Math Comput, 219, 11, 6328-6343 (2013) · Zbl 1280.65075
[26] Wang, J.; Xu, T. Z.; Wang, G. W., Numerical algorithm for time-fractional Sawada-Kotera equation and Ito equation with Bernstein polynomials, Appl Math Comput, 338, 1-11 (2018) · Zbl 1427.65306
[27] Mirzaee, F.; Samadyar, N., Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order, Appl Math Comput, 344, 191-203 (2019) · Zbl 1429.65319
[28] Chen, Y.; Liu, L.; Li, B.; Sun, Y., Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl Math Comput, 238, 329-341 (2014) · Zbl 1334.65167
[29] Alshbool, M.; Hashim, I., Multistage Bernstein polynomials for the solutions of the fractional order stiff systems, J King Saud Univ Sci, 28, 4, 280-285 (2016)
[30] Hashim, I.; Alshbool, M., Solving directly third-order odes using operational matrices of Bernstein polynomials method with applications to fluid flow equations, J King Saud Univ Sci, 31, 4, 822-826 (2019)
[31] Chen, Y. M.; Liu, L. Q.; Liu, D.; Boutat, D., Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials, Ain Shams Eng J, 9, 4, 1235-1241 (2018)
[32] Yüzbaşı, Ş., A collocation method based on Bernstein polynomials to solve nonlinear Fredholm-Volterra integro-differential equations, Appl Math Comput, 273, 142-154 (2016) · Zbl 1410.65290
[33] Erdoğan, M. S.; Dişibüyük, Ç.; Oruç, Ö. E., An alternative distribution function estimation method using rational Bernstein polynomials, J Comput Appl Math, 353, 232-242 (2019) · Zbl 1418.62134
[34] Ali, M. R.; Hadhoud, A. R., Hybrid orthonormal Bernstein and Block-Pulse functions wavelet scheme for solving the 2D Bratu problem, Results Phys, 12, 525-530 (2019)
[35] Babaaghaie, A.; Maleknejad, K., A new approach for numerical solution of two-dimensional nonlinear Fredholm integral equations in the most general kind of kernel, based on Bernstein polynomials and its convergence analysis, J Comput Appl Math, 344, 482-494 (2018) · Zbl 1398.65346
[36] Hesameddini, E.; Shahbazi, M., Solving multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type using Bernstein polynomials method, Appl Numer Math, 136, 122-138 (2019) · Zbl 1405.65168
[37] Wu, J.; Zhou, Y.; Han, X.; Cheng, S., The blackbody radiation inversion problem: anumerical perspective utilizing Bernstein polynomials, Int Commun Heat Mass Transf, 107, 114-120 (2019)
[38] Kumar, S., A numerical study for the solution of time fractional nonlinear shallow water equation in oceans, Z Naturforschung A, 68, 8-9, 547-553 (2013)
[39] Kumar, S.; Kumar, A.; Momani, S.; Aldhaifallah, M.; Nisar, K. S., Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems, Adv Differ Equ, 2019, 1, 413 (2019) · Zbl 1487.65169
[40] Fernandez, A.; Özarslan, M.; Baleanu, D., On fractional calculus with general analytic kernels, Appl Math Comput, 354, 248-265 (2019) · Zbl 1428.26011
[41] Wu, G. C.; Zeng, Z. D.; Baleanu, D., Fractional impulsive differential equations: exact solutions, integral equations and short memory case, Fract Calculus Appl Anal, 22, 1, 180-192 (2019) · Zbl 1428.34025
[42] Kumar, A.; Kumar, S.; Yan, S. P., Residual power series method for fractional diffusion equations, Fundam Inform, 151, 1-4, 213-230 (2017) · Zbl 1386.35445
[43] Akgül, A., Reproducing kernel method for fractional derivative with non-local and non-singular kernel, Fractional derivatives with Mittag-Leffler kernel, 1-12 (2019), Springer · Zbl 1446.34006
[44] Karatas A.. Reproducing kernel Hilbert space method for nonlinear boundary-value problems. Math Meth Appl Sci 2018;41(18):9142-51. · Zbl 1407.34026
[45] Heydari, M.; Hooshmandasl, M.; Mohammadi, F.; Cattani, C., Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun Nonlinear Sci Numer Simul, 19, 1, 37-48 (2014) · Zbl 1344.65126
[46] Balaji, S., Legendre wavelet operational matrix method for solution of fractional order Riccati differential equation, J Egypt Math Soc, 23, 2, 263-270 (2015) · Zbl 1330.65211
[47] Rehman, M. U.; Khan, R. A., The Legendre wavelet method for solving fractional differential equations, Commun Nonlinear Sci Numer Simul, 16, 11, 4163-4173 (2011) · Zbl 1222.65063
[48] Hosseininia, M.; Heydari, M.; Ghaini, F. M.; Avazzadeh, Z., A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation, Comput Math Appl, 78, 12, 3713-3730 (2019) · Zbl 1443.65449
[49] Pirmohabbati, P.; Sheikhani, A. H.R.; Najafi, H. S.; Ziabari, A. A., Numerical solution of fractional Mathieu equations by using block-pulse wavelets, J Ocean Eng Sci, 4, 4, 299-307 (2019)
[50] Hosseininia, M.; Heydari, M.; Roohi, R.; Avazzadeh, Z., A computational wavelet method for variable-order fractional model of dual phase lag Bioheat equation, J Comput Phys, 395, 1-18 (2019) · Zbl 1452.65196
[51] Heydari, M. H.; Avazzadeh, Z., Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos Solitons Fractals, 112, 180-190 (2018) · Zbl 1398.65316
[52] Lotka, A., Elements of physical biology (1925), Williams and Wilkins: Williams and Wilkins Baltimore, Md · JFM 51.0416.06
[53] Lamb, W. E., Theory of an optical maser, Phys Rev, 134, 6A, A1429 (1964)
[54] Li, H.; Cong, F., Dynamics of a stochastic Holling-Tanner predator-prey model, Phys A, 531, 1, 121761 (2019) · Zbl 07569459
[55] Zhang, L.; Shi, W. X.; Wang, S. M., A nonlocal and time-delayed reaction-diffusion eco-epidemiological predator-prey model, Comput Math Appl, 77, 9, 2534-2552 (2019) · Zbl 1442.92200
[56] Peng, Y.; Zhang, G., Dynamics analysis of a predator-prey model with herd behavior and nonlocal prey competition, Math Comput Simul, 170, 366-378 (2020) · Zbl 1510.92180
[57] Guo, X.; Zhu, C.; Ruan, D., Dynamic behaviors of a predator-prey model perturbed by a complex type of noises, Phys A, 523, 1024-1037 (2019) · Zbl 07563437
[58] Lotka, A. J., Contribution to the theory of periodic reactions, J Phys Chem, 14, 3, 271-274 (2002)
[59] Lotka, A. J., Contribution to the theory of periodic reactions, J Phys Chem, 14, 3, 271-274 (1910)
[60] Kumar, S.; Kumar, A.; Odibat, Z. M., A nonlinear fractional model to describe the population dynamics of two interacting species, Math Methods Appl Sci, 40, 11, 4134-4148 (2017) · Zbl 1368.34011
[61] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi (1927), C. Ferrari · JFM 52.0450.06
[62] Ahmed, E.; El-Sayed, A.; El-Saka, H. A., Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J Math Anal Appl, 325, 1, 542-553 (2007) · Zbl 1105.65122
[63] Das, S.; Gupta, P., A fractional predator-prey model and its solution, Int J Nonlinear Sci Numer Simul, 10, 7, 873-876 (2009)
[64] Das, S.; Gupta, P., A mathematical model on fractional Lotka-Volterra equations, J Theor Biol, 277, 1, 1-6 (2011) · Zbl 1405.92227
[65] Thierry, H.; Sheeren, D.; Marilleau, N.; Corson, N.; Amalric, M.; Monteil, C., From the Lotka-Volterra model to a spatialised population-driven individual-based model, Ecol Model, 306, 287-293 (2015)
[66] Srivastava, M.; Agrawal, S.; Das, S., Synchronization of chaotic fractional order Lotka-Volterra system, Int J Nonlinear Sci, 13, 4, 482-494 (2012) · Zbl 1394.34131
[67] Xu, C.; Li, P., Stability analysis in a fractional order delayed predator-prey model, Int J Math Comput Phys Quantum Eng, 7, 5, 556-559 (2013)
[68] Hernández, L. A.R.; Reyna, M. G.G.; Ortiz, J. M., Population dynamics with fractional equations (predator-prey), Acta Univ, 23, 2, 9-11 (2013)
[69] Tapaswini, S.; Chakraverty, S., Numerical solution of fuzzy arbitrary order predator-prey equations., Appl Appl Math, 8, 2, 647-672 (2013) · Zbl 1284.34009
[70] Cui, Z.; Yang, Z., Homotopy perturbation method applied to the solution of fractional Lotka-Volterra equations with variable coefficients, J Mod Methods Numer Math, 5, 1, 1-10 (2014) · Zbl 1413.65478
[71] Singh J., Kilicman A., Kumar D., Swroop R.. Numerical study for fractional model of nonlinear predator-prey biological population dynamic system, Preprints, 10.20944/preprints201808.0549.v12018.
[72] Yang, X. J., General fractional derivatives: theory, methods and applications (2019), Chapman and Hall/CRC · Zbl 1417.26001
[73] Yang, X. J.; Baleanu, D.; Srivastava, H. M., Local fractional integral transforms and their applications (2015), Academic Press
[74] Atangana, A., Derivative with a new parameter: theory, methods and applications (2015), Academic Press
[75] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Mozyrska, D., A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29, 8, 83127 (2019) · Zbl 1420.92039
[76] Kumar, D.; Singh, J.; Baleanu, D., On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math Methods Appl Sci, 43, 1, 443-457 (2020) · Zbl 1442.35515
[77] Kumar, D.; Singh, J.; Tanwar, K.; Baleanu, D., A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws, Int J Heat Mass Transf, 138, 1222-1227 (2019)
[78] Bhatter, S.; Mathur, A.; Kumar, D.; Singh, J., A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Phys A, 537, 122578 (2020) · Zbl 07571776
[79] Hajipour, M.; Jajarmi, A.; Malek, A.; Baleanu, D., Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation, Appl Math Comput, 325, 146-158 (2018) · Zbl 1429.65183
[80] Kumar, D.; Singh, J.; Purohit, S. D.; Swroop, R., A hybrid analytical algorithm for nonlinear fractional wave-like equations, Math Model Nat Phenom, 14, 3, 304 (2019) · Zbl 1423.65001
[81] Ghalib, M. M.; Zafar, A. A.; Riaz, M. B.; Hammouch, Z.; Shabbir, K., Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Phys A, 123941 (2020) · Zbl 07528385
[82] Uçar, S.; Özdemir, N.; Hammouch, Z., A fractional mixing propagation model of computer viruses and countermeasures involving Mittag-Leffler type kernel, International conference on computational mathematics and engineering sciences, 186-199 (2019), Springer
[83] Ullah, S.; Khan, M. A.; Farooq, M.; Hammouch, Z.; Baleanu, D., A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete Contin Dyn Syst S, 13, 3, 975 (2019) · Zbl 1439.92182
[84] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 198 (1998), Elsevier · Zbl 0922.45001
[85] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, 204 (2006), Elsevier Science Limited · Zbl 1092.45003
[86] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), Wiley · Zbl 0789.26002
[87] Baleanu, D.; Fernandez, A.; Akgül, A., On a fractional operator combining proportional and classical differintegrals, Mathematics, 8, 3, 360 (2020)
[88] Ahmed, H., Fractional euler method; an effective tool for solving fractional differential equations, J Egypt Math Soc, 26, 1, 38-43 (2018) · Zbl 1437.65070
[89] Yıldız, T. A.; Jajarmi, A.; Yıldız, B.; Baleanu, D., New aspects of time fractional optimal control problems within operators with nonsingular kernel, Discrete Contin Dyn Syst S, 13, 3, 407 (2020) · Zbl 1439.49010
[90] Jajarmi, A.; Baleanu, D.; Sajjadi, S. S.; Asad, J. H., A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front Phys, 7, 196 (2019)
[91] Hajipour, M.; Jajarmi, A.; Baleanu, D., On the accurate discretization of a highly nonlinear boundary value problem, Numer Algor, 79, 3, 679-695 (2018) · Zbl 1405.65143
[92] Ghanbari, B.; Kumar, S.; Kumar, R., A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fractals, 1-12 (2020)
[93] Kumar, S.; Nisar, K.; Kumar, R.; Cattani, C.; Samet, B., A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force, Math Methods Appl Sci, 1-12 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.