×

The second kind Chebyshev wavelet method for solving fractional differential equations. (English) Zbl 1245.65090

Summary: The second kind Chebyshev wavelet method is presented for solving linear and nonlinear fractional differential equations. We first construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional order integration. The operational matrix of fractional order integration is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, in: Math. Studies, vol. 204, Elsevier (North-Holland), Amsterdam, 2006.; A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, in: Math. Studies, vol. 204, Elsevier (North-Holland), Amsterdam, 2006. · Zbl 1092.45003
[2] Tenreiro Machado, J.; Kiryakova, Virginia; Mainardi, Francesco, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 3, 1140-1153 (2011) · Zbl 1221.26002
[3] Oldham, K. B., Fractional differential equations in electrochemistry, Adv. Eng. Soft., 41, 9-12 (2010) · Zbl 1177.78041
[4] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific Publishing Company: World Scientific Publishing Company Singapore · Zbl 0998.26002
[5] Suarez, L. E.; Shokooh, A., An eigenvector expansion method for the solution of motion containing fractional derivatives, J. Appl. Mech., 64, 629-635 (1997) · Zbl 0905.73022
[6] Odibat, Z.; Momani, S., Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32, 28-39 (2008) · Zbl 1133.65116
[7] Momani, S.; Odibat, Z., Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207, 96-110 (2007) · Zbl 1119.65127
[8] El-Wakil, S. A.; Elhanbaly, A.; Abdou, M. A., Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput., 182, 313-324 (2006) · Zbl 1106.65115
[9] Arikoglu, A.; Ozkol, I., Solution of fractional differential equations by using differential transform method, Chaos Solitons Fract., 34, 1473-1481 (2007) · Zbl 1152.34306
[10] Darania, P.; Ebadian, A., A method for the numerical solution of the integro-differential equations, Appl. Math. Comput., 188, 657-668 (2007) · Zbl 1121.65127
[11] Erturk, V. S.; Momani, S., Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 215, 142-151 (2008) · Zbl 1141.65088
[12] Erturk, V. S.; Momani, S.; Odibat, Z., Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 13, 1642-1654 (2008) · Zbl 1221.34022
[13] Li, Y. L.; Sun, N., Numerical solution of fractional differential equations using the generalized block pulse operational matrix, Comput. Math. Appl., 62, 3, 1046-1054 (2011) · Zbl 1228.65135
[14] Li, Y. L.; Zhao, W. W., Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216, 8, 2276-2285 (2010) · Zbl 1193.65114
[15] Jafari, H.; Yousefi, S. A.; Firoozjaee, M. A.; Momani, S.; Khalique, C. M., Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 62, 3, 1038-1045 (2011) · Zbl 1228.65253
[16] Li, Y. L., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul., 15, 2284-2292 (2010) · Zbl 1222.65087
[17] Saeedi, H.; Mohseni Moghadam, M.; Mollahasani, N.; Chuev, G. N., A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul., 16, 1154-1163 (2011) · Zbl 1221.65354
[18] Saeedi, H.; Mohseni Moghadam, M., Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets, Appl. Math. Comput., 16, 1216-1226 (2011) · Zbl 1221.65140
[19] Tenreiro Machado, J. A., Fractional derivatives: probability interpretation and frequency response of rational approximations, Commun. Nonlinear Sci. Numer. Simul., 14, 3492-3497 (2009)
[20] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications (1999), Academic Press: Academic Press New York · Zbl 0924.34008
[21] Khana, N. A.; Ara, A.; Jamil, M., An efficient approach for solving the Riccati equation with fractional orders, Comput. Math. Appl., 61, 2683-2689 (2011) · Zbl 1221.65205
[22] Q.B. Fan, Wavelet Analysis, Wuhan University Press, Wuhan, 2008.; Q.B. Fan, Wavelet Analysis, Wuhan University Press, Wuhan, 2008.
[23] Tavassoli Kajani, M.; Hadi Vencheh, A.; Ghasemi, M., The Chebyshev wavelets operational matrix of integration and product operation matrix, Int. J. Comput. Math., 86, 1118-1125 (2008) · Zbl 1169.65072
[24] L. Zhu, Y.X. Wang, Q.B. Fan, Numerical computation method in solving integral equation by using the second Chebyshev wavelets, in: The 2011 International Conference on Scientific Computing, Las Vegas, USA, 2011, pp. 126-130.; L. Zhu, Y.X. Wang, Q.B. Fan, Numerical computation method in solving integral equation by using the second Chebyshev wavelets, in: The 2011 International Conference on Scientific Computing, Las Vegas, USA, 2011, pp. 126-130.
[25] Zhu, L.; Fan, Q. B., Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci. Numer. Simul., 17, 6, 2333-2341 (2012) · Zbl 1335.45002
[26] Kilicman, A., Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187, 250-265 (2007) · Zbl 1123.65063
[27] Mujeeb, U. R.; Rahmat, A. K., The Legendre wavelet method for solving fractional differential equations, Commun Nonlinear Sci. Numer. Simulat., 16, 11, 4163-4173 (2011) · Zbl 1222.65063
[28] Diethelm, K.; Ford, N. J., Numerical solution of the Bagley-Torvik equation, BIT, 42, 490-507 (2002) · Zbl 1035.65067
[29] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 1326-1336 (2010) · Zbl 1189.65151
[30] Hashim, I.; Abdulaziz, O.; Momani, S., Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14, 674-684 (2009) · Zbl 1221.65277
[31] Kumar, P.; Agrawal, O. P., An approximate method for numerical solution of fractional differential equations, Signal Process., 86, 2602-2610 (2006) · Zbl 1172.94436
[32] Odibat, Z.; Momani, S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Soliton Fract., 36, 167-174 (2008) · Zbl 1152.34311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.