×

A global-local approach for hydraulic phase-field fracture in poroelastic media. (English) Zbl 1524.74398

Summary: In this work, phase-field modeling of hydraulic fractures in porous media is extended towards a Global-Local approach. Therein, the failure behavior is solely analyzed in a (small) local domain. In the surrounding medium, a simplified and linearized system of equations is solved. Both domains are coupled with Robin-type interface conditions. The fractures inside the local domain are allowed to propagate and consequently, both subdomains change within time. Here, a predictor-corrector strategy is adopted, in which the local domain is dynamically adjusted to the current fracture pattern. The resulting framework is algorithmically described in detail and substantiated with some numerical tests.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

IPACS

References:

[1] Bourdin, B.; Chukwudozie, C.; Yoshioka, K., A variational approach to the numerical simulation of hydraulic fracturing, SPE J. (2012), Conference Paper 159154-MS
[2] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM Int. J. Geomath., 10, 1 (2019) · Zbl 1419.74216
[3] Mikelić, A.; Wheeler, M. F.; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287
[4] Wheeler, M.; Wick, T.; Wollner, W., An augmented-lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170
[5] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[6] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems, Proc. Appl. Math. Mech., 18, 1, Article e201800353 pp. (2018)
[7] Singh, N.; Verhoosel, C.; van Brummelen, E., Finite element simulation of pressure-loaded phase-field fractures, Meccanica, 53, 6, 1513-1545 (2018) · Zbl 1390.74169
[8] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput. Methods Appl. Mech. Engrg., 351, 860-890 (2019) · Zbl 1441.74213
[9] Mikelić, A.; Wheeler, M. F.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, SIAM Multiscale Model. Simul., 13, 1, 367-398 (2015) · Zbl 1317.74028
[10] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of a fluid-driven fracture in a poroelastic medium, Comput. Geosci., 19, 6, 2015 (2015) · Zbl 1390.86010
[11] Wick, T.; Singh, G.; Wheeler, M., Fluid-filled fracture propagation using a phase-field approach and coupling to a reservoir simulator, SPE J., 21, 03, 981-999 (2016)
[12] Lee, S.; Wheeler, M. F.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase-field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419
[13] Miehe, C.; Mauthe, S.; Teichtmeister, S., Minimization principles for the coupled problem of darcy-biot-type fluid transport in porous media linked to phase-field modeling of fracture, J. Mech. Phys. Solids, 82, 186-217 (2015)
[14] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[15] Ehlers, W.; Luo, C., A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Comput. Methods Appl. Mech. Engrg., 315, 348-368 (2017) · Zbl 1439.74107
[16] Heider, Y.; Sun, W., A phase-field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking, Comput. Methods Appl. Mech. Engrg. (2019) · Zbl 1441.74205
[17] Aldakheel, F., A microscale model for concrete failure in poro-elasto-plastic media, Theor. Appl. Fract. Mech., Article 102517 pp. (2020)
[18] Heider, Y.; Reiche, S.; Siebert, P.; Markert, B., Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data, Eng. Fract. Mech., 202, 116-134 (2018)
[19] Lee, S.; Min, B.; Wheeler, M. F., Optimal design of hydraulic fracturing in porous media using the phase-field fracture model coupled with genetic algorithm, Comput. Geosci., 22, 3, 833-849 (2018) · Zbl 1405.76055
[20] Wang, K.; Sun, W., A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1-32 (2017) · Zbl 1439.74373
[21] Lee, S.; Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comput. Methods Appl. Mech. Engrg., 312, 509-541 (2016) · Zbl 1439.74359
[22] Cajuhi, T.; Sanavia, L.; De Lorenzis, L., Phase-field modeling of fracture in variably saturated porous media, Comput. Mech. (2017) · Zbl 1458.74125
[23] Lee, S.; Wheeler, M. F.; Wick, T.; Srinivasan, S., Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks, Mech. Res. Commun., 80, 16-23 (2017), Multi-Physics of Solids at Fracture
[24] Chukwudozie, C.; Bourdin, B.; Yoshioka, K., A variational phase-field model for hydraulic fracturing in porous media, Comput. Methods Appl. Mech. Engrg., 347, 957-982 (2019) · Zbl 1440.74121
[25] Wilson, Z. A.; Landis, C. M., Phase-field modeling of hydraulic fracture, J. Mech. Phys. Solids, 96, 264-290 (2016) · Zbl 1482.74020
[26] Aldakheel, F.; Tomann, C.; Lohaus, L.; Wriggers, P., Water-induced failure mechanics for concrete, Proc. Appl. Math. Mech., 19, 1 (2019)
[27] Wriggers, P.; Aldakheel, F.; Lohaus, L.; Heist, M., Wasserinduzierte Schädigungsmechanismen zyklisch beanspruchter Hochleistungsbetone, Bauingenieur, 95, 4, 126-132 (2020)
[28] Wheeler, M.; Wick, T.; Lee, S., IPACS: Integrated phase-field advanced crack propagation simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media, Comput. Methods Appl. Mech. Engrg., 367, Article 113124 pp. (2020) · Zbl 1442.74216
[29] Lee, S.; Mikelic, A.; Wheeler, M.; Wick, T., Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, Multiscale Model. Simul., 16, 4, 1542-1580 (2018) · Zbl 1401.74084
[30] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[31] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[32] Miehe, C.; Hofacker, M.; Schänzel, L.-M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. brittle-to-ductile failure mode transition and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[33] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[34] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 3, 980-1012 (2010) · Zbl 1305.74080
[35] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional, Math. Models Methods Appl. Sci., 23, 9, 1663-1697 (2013) · Zbl 1266.74044
[36] Brun, M. K.; Wick, T.; Berre, I.; Nordbotten, J. M.; Radu, F. A., An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters, Comput. Methods Appl. Mech. Engrg., 361, 112752 (2020) · Zbl 1442.74208
[37] Mang, K.; Wick, T., (Numerical Methods for Variational Phase-Field Fracture Problems. Numerical Methods for Variational Phase-Field Fracture Problems, Lecture notes at Leibniz University Hannover (2019))
[38] Gerasimov, T.; Lorenzis, L. D., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016) · Zbl 1439.74349
[39] Wick, T., An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation, SIAM J. Sci. Comput., 39, 4, B589-B617 (2017) · Zbl 1403.74131
[40] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput. Methods Appl. Mech. Engrg., 325, 577-611 (2017) · Zbl 1439.74375
[41] Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput., 37, 4, B633-B659 (2015) · Zbl 1325.74134
[42] Wick, T., Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Comput. Mech., 57, 6, 1017-1035 (2016) · Zbl 1382.74130
[43] Gerasimov, T.; Noii, N.; Allix, O.; De Lorenzis, L., A non-intrusive global/local approach applied to phase-field modeling of brittle fracture, Adv. Model. Simul. Eng. Sci. (2018)
[44] Geelen, R.; Plews, J.; Tupek, M.; Dolbow, J., An extended/generalized phase-field finite element method for crack growth with global-local enrichment, Internat. J. Numer. Methods Engrg. (2020)
[45] Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P., An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comput. Methods Appl. Mech. Engrg. (2019)
[46] Dana, S.; Wheeler, M. F., Convergence analysis of two-grid fixed stress split iterative scheme for coupled flow and deformation in heterogeneous poroelastic media, Comput. Methods Appl. Mech. Engrg., 341, 788-806 (2018) · Zbl 1440.74122
[47] Dana, S.; Ganis, B.; Wheeler, M. F., A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J. Comput. Phys., 352, 1-22 (2018) · Zbl 1375.76085
[48] Girault, V.; Wheeler, M. F.; Almani, T.; Dana, S., A priori error estimates for a discretized poro-elastic-elastic system solved by a fixed-stress algorithm, Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles, 24 (2019)
[49] Aldakheel, F.; Mauthe, S.; Miehe, C., Towards phase-field modeling of ductile fracture in gradient-extended elastic-plastic solids, Proc. Appl. Math. Mech., 14, 411-412 (2014)
[50] Aldakheel, F., Mechanics of Nonlocal Dissipative Solids: Gradient Plasticity and Phase Field Modeling of Ductile Fracture (2016), Institute of Applied Mechanics (CE), Chair I, University of Stuttgart, (Ph.D. thesis)
[51] Dittmann, M.; Aldakheel, F.; Schulte, J.; Wriggers, P.; Hesch, C., Variational phase-field formulation of non-linear ductile fracture, Comput. Methods Appl. Mech. Engrg., 342, 71-94 (2018) · Zbl 1440.74025
[52] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Internat. J. Numer. Methods Engrg., 111, 9, 816-863 (2017) · Zbl 07867126
[53] Wohlmuth, B., A mortar finite element method using dual spaces for the lagrange multiplier, SIAM J. Numer. Anal., 38 (2000) · Zbl 0974.65105
[54] Wohlmuth, B., A comparison of dual lagrange multiplier spaces for mortar finite element discretizations, ESAIM Math. Model. Numer. Anal., 36, 6, 995-1012 (2002) · Zbl 1024.65111
[55] Wohlmuth, B., Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20, 569-734 (2011) · Zbl 1432.74176
[56] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B. I.; Wall, W. A.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259-280 (2016) · Zbl 1425.74490
[57] Girault, V.; Pencheva, G. V.; Wheeler, M. F.; Wildey, T. M., Domain decomposition for linear elasticity with dg jumps and mortars, Comput. Methods Appl. Mech. Engrg., 198, 21, 1751-1765 (2009), Advances in Simulation-Based Engineering Sciences - Honoring J. Tinsley Oden · Zbl 1227.74069
[58] Girault, V.; Pencheva, G.; Wheeler, M. F.; Wildey, T., Domain decomposition for poroelasticity and elasticity with dg jumps and mortars, Math. Models Methods Appl. Sci., 21, 1, 169-213 (2011) · Zbl 1216.35153
[59] Biot, M., Theory of finite deformations of pourous solids, Indiana Univ. Math. J., 21, 597-620 (1972) · Zbl 0229.76065
[60] Coussy, O., Mechanics of Porous Continua (1995), Wiley · Zbl 0838.73001
[61] De Boer, R., Theory of Porous Media: Highlights in Historical Development and Current State (2000), Springer Science & Business Media · Zbl 0945.74001
[62] Ehlers, W., Foundations of Multiphasic and Porous Materials, 3-86 (2002), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 1062.76050
[63] Schrefler, B. A.; Secchi, S.; Simoni, L., On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. Methods Appl. Mech. Engrg., 195, 4, 444-461 (2006), Adaptive Modeling and Simulation · Zbl 1193.74158
[64] Markert, B., A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua, Transp. Porous Media, 70, 3, 427 (2007)
[65] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput. Methods Appl. Mech. Engrg., 341, 443-466 (2018) · Zbl 1440.74352
[66] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified gurson-type plasticity model at finite strains: Formulation, numerical analysis and phase-field coupling, Comput. Mech., 62, 815-833 (2018) · Zbl 1459.74024
[67] Khodadadian, A.; Noii, N.; Parvizi, M.; Abbaszadeh, M.; Wick, T.; Heitzinger, C., A bayesian estimation method for variational phase-field fracture problems, Computational Mechanics, 1-23 (2020)
[68] Terzaghi, K., (Theoretical Soil Mechanics (1943), Johnwiley & Sons: Johnwiley & Sons New York), 11-15
[69] De Boer, R.; Ehlers, W., The development of the concept of effective stresses, Acta Mech., 83, 1-2, 77-92 (1990) · Zbl 0724.73195
[70] Gosselet, P.; Rey, C., Non-overlapping domain decomposition methods in structural mechanics, Arch. Comput. Methods Eng., 13, 515-572 (2006) · Zbl 1171.74041
[71] Gendre, L.; Allix, O.; Gosselet, P.; Comte, F., Non-intrusive and exact global/local techniques for structural problems with local plasticity, Comput. Mech., 44, 233-245 (2009) · Zbl 1165.74040
[72] Farhat, C.; Roux, F., A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32, 1205-1227 (1991) · Zbl 0758.65075
[73] Mota, A.; Tezaur, I.; Alleman, C., The schwarz alternating method in solid mechanics, Comput. Methods Appl. Mech. Engrg., 319, 19-51 (2017) · Zbl 1439.74450
[74] Xia, L.; Yvonnet, J.; Ghabezloo, S., Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media, Eng. Fract. Mech., 186, 158-180 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.