×

Phase-field modeling of a fluid-driven fracture in a poroelastic medium. (English) Zbl 1390.86010

Summary: In this paper, we present a phase field model for a fluid-driven fracture in a poroelastic medium. In our previous work, the pressure was assumed given. Here, we consider a fully coupled system where the pressure field is determined simultaneously with the displacement and the phase field. To the best of our knowledge, such a model is new in the literature. The mathematical model consists of a linear elasticity system with fading elastic moduli as the crack grows, which is coupled with an elliptic variational inequality for the phase field variable and with the pressure equation containing the phase field variable in its coefficients. The convex constraint of the variational inequality assures the irreversibility and entropy compatibility of the crack formation. The phase field variational inequality contains quadratic pressure and strain terms, with coefficients depending on the phase field unknown. We establish existence of a solution to the incremental problem through convergence of a finite dimensional approximation. Furthermore, we construct the corresponding Lyapunov functional that is linked to the free energy. Computational results are provided that demonstrate the effectiveness of this approach in treating fluid-driven fracture propagation.

MSC:

86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Software:

Trilinos; deal.ii

References:

[1] Adachi, J; Siebrits, E; Peirce, A; Desroches, J, Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci., 44, 739-757, (2007) · doi:10.1016/j.ijrmms.2006.11.006
[2] Bangerth, W., Heister, T., Kanschat, G.: Differential Equations Analysis Library (2012)
[3] Biot, MA, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482, (1962) · Zbl 0104.21401 · doi:10.1063/1.1728759
[4] Bourdin, B; Francfort, GA; Marigo, J-J, The variational approach to fracture, J. Elasticity, 91, 1-148, (2008) · Zbl 1176.74018
[5] de Borst, R; Rethoré, J; Abellan, MA, A numerical approach for arbitrary cracks in a fluid-saturated porous medium, Arch. Appl. Mech., 75, 595-606, (2006) · Zbl 1168.74447 · doi:10.1007/s00419-006-0023-y
[6] Calhoun, R; Lowengrub, M, A two dimensional asymmetrical crack problem, J. Elasticity, 4, 37-50, (1974) · Zbl 0286.73075 · doi:10.1007/BF00042401
[7] Coussy, O.: Poromechanics. Wiley, Chichester (2004)
[8] Detournay, E; Garagash, DI, The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid, J. Fluid Mech., 494, 1-32, (2003) · Zbl 1063.74098 · doi:10.1017/S0022112003005275
[9] Francfort, GA; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids., 46, 1319-1342, (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[10] Ganis, B; Girault, V; Mear, M; Singh, G; Wheeler, MF, Modeling fractures in a poro-elastic medium, Oil & Gas Science and Technology - Rev. IFP, Energies nouvelles, 69, 515-528, (2014) · doi:10.2516/ogst/2013171
[11] Irzal, F; Remmers, JJC; Huyghe, JM; de Borst, R, A large deformation formulation for fluid flow in a progressively fracturing porous material, Comput. Methods Appl. Mech. Engrg., 256, 29-37, (2013) · Zbl 1352.76113 · doi:10.1016/j.cma.2012.12.011
[12] Miehe, C; Welschinger, F; Hofacker, M, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273-1311, (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[13] Heister, T; Wheeler, MF; Wick, T, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495, (2015) · Zbl 1423.76239 · doi:10.1016/j.cma.2015.03.009
[14] Hintermüller, M; Ito, K; Kunisch, K, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 865-888, (2002) · Zbl 1080.90074 · doi:10.1137/S1052623401383558
[15] Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium. ICES Report 13-15 (2013) · Zbl 1352.76113
[16] Mikelić, A; Wheeler, MF; Wick, T, A quasistatic phase field approach to pressurized fractures, Nonlinearity, 28, 1371-1399, (2015) · Zbl 1316.35287 · doi:10.1088/0951-7715/28/5/1371
[17] Mikelić, A; Wheeler, MF; Wick, T, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, SIAM Multiscale Model. Simul., 13, 367-398, (2015) · Zbl 1317.74028 · doi:10.1137/140967118
[18] Secchi, S; Schrefler, BA, A method for 3-D hydraulic fracturing simulation, Int. J. Fract., 178, 245-258, (2012) · doi:10.1007/s10704-012-9742-y
[19] Schrefler, BA; Secchi, St; Simoni, L, On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. Meth. Appl. Mech. Engrg., 195, 444-461, (2006) · Zbl 1193.74158 · doi:10.1016/j.cma.2004.10.014
[20] Sneddon, I.N., Lowengrub, M.: Crack problems in the classical theory of elasticity. The SIAM series in Applied Mathematics. Wiley (1969) · Zbl 0201.26702
[21] Tolstoy, I. (ed.): Acoustics, elasticity, and thermodynamics of porous media. Twenty-one papers by M.A. Biot. Acoustical Society of America, New York (1992)
[22] Wheeler, MF; Wick, T; Wollner, W, An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85, (2014) · Zbl 1296.65170 · doi:10.1016/j.cma.2013.12.005
[23] Heroux, MA; Bartlett, RA; Howle, VE; Hoekstra, RJ; Hu, JJ; Kolda, TG; Lehoucq, RB; Long, KR; Pawlowski, RP; Phipps, ET; Salinger, AG; Thornquist, HK; Tuminaro, RS; Willenbring, JM; Williams, A; Stanley, KS, An overview of the trilinos project, ACM Trans. Math. Softw., 31, 397-423, (2005) · Zbl 1136.65354 · doi:10.1145/1089014.1089021
[24] Wick, T., Singh, G., Wheeler, M.F.: Fluid-Filled Fracture Propagation using a Phase-Field Approach and Coupling to a Reservoir Simulator, SPE-168597-PA in SPE Journal 2015, 19. doi:10.2118/168597-PA · Zbl 1063.74098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.