×

Shape optimization of conductive-media interfaces using an IGA-BEM solver. (English) Zbl 1440.74334

Summary: In this paper, we present a method that combines the Boundary Element Method (BEM) with IsoGeometric Analysis (IGA) for numerically solving the system of Boundary Integral Equations (BIE) arising in the context of a 2-D steady-state heat conduction problem across a periodic interface separating two conducting and conforming media. Our approach leads to a fast solver with high convergence rate when compared with low-order BEM. Additionally, an optimization framework comprising a parametric model for the interface’s shape, our IGA-BEM solver, and evolutionary and gradient-based optimization algorithms is developed and tested. The optimization examples demonstrate the efficiency of the framework in generating optimum interfaces for maximizing heat transfer under various geometric constraints.

MSC:

74P20 Geometrical methods for optimization problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65N38 Boundary element methods for boundary value problems involving PDEs
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

COMSOL; BEMLIB; quadva; quadgk

References:

[1] Incropera, F. P.; DeWitt, D. P., Fundamentals of Heat and Mass Transfer (2002), CRC Press
[2] Lavrentev, M. A.; Shabat, B. V., Methods of the Theory of Functions of Complex Variable (1965), Nauka: Nauka Moscow
[3] Leontiou, T.; Fyrillas, M. M., Critical biot number of a periodic array of rectangular fins, ASME J. Heat Transfer, 138, 024504-1-024504-4 (2016)
[4] Fyrillas, M. M.; Ospanov, S.; Kaibaldiyeva, U., Critical biot numbers of periodic arrays of fins, ASME J. Therm. Sci. Eng. Appl., 9, 044502-1-044502-6 (2017)
[5] Fyrillas, M. M.; Stone, H. A., Critical insulation thickness of a slab embedded with a periodic array of isothermal strips, Int. J. Heat Mass Transfer, 54, 180-185 (2011) · Zbl 1205.80020
[6] Fyrillas, M. M., Critical depth of buried isothermal circular pipes, Heat Transfer Eng., 39, 51-57 (2018)
[7] Fyrillas, M. M.; Pozrikidis, C., Conductive heat transport across rough surfaces and interfaces between two conforming media, Int. J. Heat Mass Transfer, 44, 1789-1801 (2001) · Zbl 1016.80003
[8] Leontiou, T.; Kotsonis, M.; Fyrillas, M. M., Optimum isothermal surfaces that maximize heat transfer, Int. J. Heat Mass Transfer, 63, 13-19 (2013)
[9] Fyrillas, M. M.; Leontiou, T.; Kostas, K. V., Optimum interfaces that maximize the heat transfer rate between two conforming conductive media, Int. J. Therm. Sci., 121, 381-389 (2017)
[10] Harbrecht, H.; Tausch, J., On the numerical solution of a shape optimization problem for the heat equation, SIAM J. Sci. Comput., 35, 104-121 (2013) · Zbl 1264.65156
[11] Colaco, M. J.; Orlande, H. R.B.; Dulikravich, G. S., Inverse and optimization problems in heat transfer, J. Braz. Soc. Mech. Sci. Eng., 28, 1-24 (2006)
[12] Mohebbi, F.; Sellier, M., Three-dimensional optimal shape design in heat transfer based on body-fitted grid generation, Int. J. Comput. Methods Eng. Sci. Mech., 14, 473-490 (2013) · Zbl 07871362
[13] Mohebbi, F.; Sellier, M., Optimal shape design in heat transfer based on body-fitted grid generation, Int. J. Comput. Methods Eng. Sci. Mech., 14, 227-243 (2013) · Zbl 07871346
[14] Cheng, C.-H.; Wu, C.-Y., An approach combining body-fitted grid generation and conjugate gradient methods for shape design in heat conduction problems, Numer. Heat Transfer Part B, 37, 69-83 (2000)
[15] Cheng, C.-H.; Chang, M.-H., Shape design for a cylinder with uniform temperature distribution on the outer surface by inverse heat transfer method, Int. J. Heat Mass Transfer, 46, 101-111 (2003) · Zbl 1041.76025
[16] Fyrillas, M. M., Shape optimization for 2d diffusive scalar transport, Optim. Eng., 10, 477-483 (2009) · Zbl 1273.80010
[17] Fyrillas, M. M., Heat conduction in a solid slab embedded with a pipe of general cross-section: shape factor and shape optimization, Internat. J. Engrg. Sci., 46, 907-916 (2008) · Zbl 1213.74251
[18] Fyrillas, M. M., Shape factor and shape optimization for a periodic array of isothermal pipes, Int. J. Heat Mass Transfer, 53, 982-989 (2010) · Zbl 1183.80027
[19] Leontiou, T.; Fyrillas, M. M., Shape optimization with isoperimetric constraints for isothermal pipes embedded in an insulated slab, ASME J. Heat Transfer, 136, 94502-1-094502-6 (2014)
[20] T. Leontiou, M.M. Fyrillas, Critical thickness of an optimum extended surface characterized by uniform heat transfer coefficient, 2015, arXiv:1503.05148 [physics.class-ph].
[21] Leontiou, T.; Ikram, M.; Beketayev, K.; Fyrillas, M. M., Heat transfer enhancement of a periodic array of isothermal pipes, Int. J. Therm. Sci., 104, 480-488 (2016)
[22] Tikhonov, A. N.; Arsenin, V. Y., Solution of Ill-Posed Problems (1977), Winston & Sons, Washington, DC · Zbl 0354.65028
[23] Allaire, G., Shape Optimization by the Homogenization Method (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0990.35001
[24] Morin, P.; Nochetto, R.; Paulettim, M. S.; Verani, M., Adaptive finite element method for shape optimization, ESAIM: COCV, 18, 1122-1149 (2012) · Zbl 1259.49046
[25] de Gournay, F.; Fehrenbach, J.; Plouraboue, F., Shape optimization for the generalized graetz problem, Struct. Multidiscip. Optim., 49, 993-1008 (2014)
[26] Fyrillas, M. M., Advection-dispersion mass transport associated with a non-aqueous-phase liquid pool, J. Fluid Mech., 413, 49-63 (2000) · Zbl 0955.76087
[27] Fyrillas, M. M.; Kontoghiorghes, E. J., Advection-dispersion mass transport associated with a non-aqueous-phase liquid pool, Trans. Porous Media, 55, 91-102 (2004)
[28] Ioannou, M.; Fyrillas, M. M.; Doumanidis, H., Approximate solution to fredholm integral equations using linear regression and applications to heat and mass transfer, Eng. Anal. Bound. Elem., 36, 1278-1283 (2012) · Zbl 1352.65653
[29] Brebbia, C. A., Boundary Elements: An Introductory Course, Computational Mechanics (1992) · Zbl 0780.73002
[30] Pozrikidis, C., A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (2002), CRC Press · Zbl 1019.65097
[31] Ang, W.-T., A Beginner’s Course in Boundary Element Methods (2007), Universal Publishers
[32] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[33] C. Politis, A. Ginnis, P. Kaklis, K. Belibassakis, C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, in: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, 2009, pp. 349-354.
[34] Simpson, R.; Bordas, S.; Trevelyan, J.; Rabczuk, T., A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100 (2012) · Zbl 1243.74193
[35] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 0, 197-221 (2013) · Zbl 1297.74156
[36] Belibassakis, K. A.; Gerosthathis, T. P.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Ginnis, A.-A.; Feurer, C., A BEM-Isogeometric method for the ship wave-resistance problem, Ocean Eng., 60, 53-67 (2013)
[37] Peake, M.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Engrg., 259, 93-102 (2013) · Zbl 1286.65176
[38] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290 (2014) · Zbl 1296.65175
[39] Ginnis, A. I.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Belibassakis, K. A.; Gerostathis, Th. P.; Scott, M. A.; Hughes, T. J.R., Isogeometric boundary-element analysis for the wave-resistance problem using T-splines, Comput. Methods Appl. Mech. Engrg., 279, 425-439 (2014) · Zbl 1423.74270
[40] Kaklis, P. D.; Politis, C. G.; Belibassakis, K. A.; Ginnis, A. I.; Kostas, K. V.; Gerostathis, G. P., Encyclopedia of Computational Mechanics, Vol. Fluids-Part 2, 1-35 (2017), Wiley, (Chapter). Boundary-Element Methods and Wave Loading on Ships
[41] An, Z.; Yu, T.; Bui, T. Q.; Wang, C.; Trinh, N. A., Implementation of isogeometric boundary element method for 2-d steady heat transfer analysis, Adv. Eng. Softw., 116, 36-49 (2018)
[42] H. Lian, R. Simpson, S. Bordas, Sensitivity analysis and shape optimisation through a t-spline isogeometric boundary element method, in: International Conference on Computational Mechanics, CM13, Durham, UK, 2013.
[43] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Implementation of regularized isogeometric boundary element methods for gradientbased shape optimization in twodimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 12, 972-1017 (2016) · Zbl 1352.74467
[44] Kostas, K. V.; Ginnis, A. I.; Politis, C. G.; Kaklis, P. D., Ship-hull shape optimization with a T-spline based BEM-isogeometric solver, Comput. Methods Appl. Mech. Engrg., 284, 611-622 (2015), Isogeometric Analysis Special Issue · Zbl 1425.65201
[45] Kostas, K. V.; Ginnis, A. I.; Politis, C. G.; Kaklis, P. D., Shape-optimization of 2d hydrofoils using an isogeometric bem solver, J. Comput. Aided Des., 82, 79-87 (2017)
[46] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437 (2011), solid and Physical Modeling 2011
[47] Yoon, M.; Cho, S., Isogeometric shape design sensitivity analysis of elasticity problems using boundary integral equations, Eng. Anal. Bound. Elem., 66, 119-128 (2016) · Zbl 1403.74262
[48] Sun, S.; Yu, T.; Nguyen, T.; Atroshchenko, E.; Bui, T., Structural shape optimization by igabem and particle swarm optimization algorithm, Eng. Anal. Bound. Elem., 88, 26-40 (2018) · Zbl 1403.74234
[49] Piegl, L.; Tiller, W., The Nurbs Book (1997), Springer Verlag · Zbl 0868.68106
[50] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press · Zbl 0899.65077
[51] Aimi, A.; Calabr, F.; Diligenti, M.; Sampoli, M.; Sangalli, G.; Sestini, A., Efficient assembly based on b-spline tailored quadrature rules for the iga-sgbem, Comput. Methods Appl. Mech. Engrg., 331, 327-342 (2018) · Zbl 1439.65207
[52] Shampine, L. F., Vectorized adaptive quadrature in MATLAB, Comput. Appl. Math., 211, 131-140 (2008) · Zbl 1134.65021
[53] COMSOL v.5.3, COMSOL Multiphysics User’s Guide, https://www.comsol.com/ (2017).
[54] Hautman, J.; Klein, M. L., An ewald summation method for planar surfaces and interfaces, Mol. Phys., 75, 2, 379-395 (1992)
[55] Pozrikidis, C., Conductive mass transport from a semi-infinite lattice of particles, Int. J. Heat Mass Transfer, 43, 4, 493-504 (2000) · Zbl 0969.80002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.