×

Critical insulation thickness of a rectangular slab embedded with a periodic array of isothermal strips. (English) Zbl 1205.80020

Summary: We address the problem of two-dimensional heat conduction in a solid slab embedded with a periodic array of isothermal strips. The surfaces of the slab are subjected to a convective heat transfer boundary condition with a uniform heat transfer coefficient. Similar to the concept of critical insulation radius, associated with cylindrical and spherical configurations, we show that there exists a critical insulation thickness, associated with the slab, such that the total thermal resistance attains a minimum, i.e. a maximum heat transfer rate can be achieved. This result, which is not observed in one-dimensional heat conduction in a plane wall, is a consequence of the non-trivial coupling between conduction and convection that results in a 2D temperature distribution in the slab, and a non-uniform temperature on the surface of the slab. The findings of this work offer opportunities for improving the design of a broad range of engineering processes and products.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80M15 Boundary element methods applied to problems in thermodynamics and heat transfer

Software:

COMSOL
Full Text: DOI

References:

[1] Incropera, F. P.; Dewitt, D. P.: Fundamentals of heat and mass transfer, (1990)
[2] Aziz, A.: The critical thickness of insulation, Heat transfer eng. 18, 61 (1997)
[3] Hsieh, C. M.; Yang, S. L.: A new theory of critical thickness of insulation, J. heat transfer 106, 648 (1984)
[4] Simmons, L. D.: Critical thickness of insulation accounting for variable convection coefficient and radiation loss, J. heat transfer 98, 150 (1976)
[5] Habib, I. S.: The effects of radiation, inclination and insulation opacity on the critical radius for radial heat transfer, Int. J. Heat mass transfer 25, 1607 (1982)
[6] Kulkarni, M. R.: Critical radius for radial heat conduction: a necessary criterion but not always sufficient, Appl. thermal eng. 24, 61 (2003)
[7] Ankireddi, S.; Pecavar, S.: A Fourier series-based analytical solution for three-dimensional conjugate heat transfer problems in microprocessor cooling, IEEE trans. Comp. packaging technol. 31, 461 (2008)
[8] Stavrou, K.; Trancoso, P.: TSIC: thermal scheduling simulator for chip microprocessors, Lect. notes comput. Sci. 3746, 589 (2005)
[9] C.D. Patel, A vision of energy aware computing from chips to data centers, in: The International Symposium on Micro-Mechanical Engineering, December 1 – 3 JSME, ISMME2003-K15, 2003.
[10] Araki, K.; Kamoto, D.; Matsuoka, S.: Optimization about multilayer laminated film and getter device materials of vacuum insulation panel for using at high temperature, J. mater. Process. technol. 209, 271 (2009)
[11] Drakonakis, V. M.; Seferis, J. C.; Wardle, B. L.; Nam, J. -D.; Papanicolaou, G. C.; Doumanidis, C. C.: Kinetic viscoelastic modeling applied to degradation during carbon-carbon composite processing, Acta astronautica 66, 1189 (2010)
[12] Doumanidis, C. C.: Nanomanufacturing of random branching material architectures, Microelectron. eng. 86, 467 (2009)
[13] Ioannou, Y.; Fyrillas, M. M.; Polychronopoulou, K.; Doumanidis, C.: Analytical model for geometrical characteristics control of laser sintered surfaces, Int. J. Nano-manufactur. 6, 300 (2010)
[14] H. Jogdand, G. Gulsoy, T. Ando, J. Chen, C.C. Doumanidis, Z. Gu, C. Rebholz, P. Wong, Fabrication and characterization of nanoscale heating sources (”nanoheaters) for nanomanufacturing, in: NSTI Nanotechnology Conference, Boston, MA, June 1 – 5, vol. 280, 2008.
[15] Q. Cui, H. Jogland, J. Chen, Z. Gus, Structures and ignition properties of nanoheaters formed by Bimetallic Al – Ni reactive nanostructures, in: Mater. Res. Soc. Symp. Proc., vol. 1148, 2009.
[16] Fyrillas, M. M.: Shape optimization for 2D diffusive scalar transport, Optim. eng. 477 (2009) · Zbl 1273.80010
[17] C.A. Brebbia, Boundary Elements: An Introductory Course, Computational Mechanics, second ed., 1992. · Zbl 0780.73002
[18] Stone, H. A.: Heat/mass transfer from surface films to shear flows at arbitrary Péclet numbers, Phys. fluids A 1, 1112 (1989)
[19] Fyrillas, M. M.; Kontoghiorghes, E. J.: Numerical calculation of mass transfer from elliptical pools in uniform flow using the boundary element method, Trans. porous media 55, 91 (2004)
[20] Bau, H. H.; Sadhal, S. S.: Heat losses from a fluid flowing in a buried pipe, Int. J. Heat mass transfer 25, 1621 (1982) · Zbl 0496.76090 · doi:10.1016/0017-9310(82)90141-7
[21] Greenberg, M. D.: Foundations of applied mathematics, (1978) · Zbl 0381.00001
[22] Fyrillas, M. M.: Shape factor and shape optimization for a periodic array of isothermal pipes, Int. J. Heat mass transfer 53, 982 (2010) · Zbl 1183.80027 · doi:10.1016/j.ijheatmasstransfer.2009.11.016
[23] Magnus, W.; Oberhettinger, F.: Formulas and theorems for the functions of mathematical physics, (1949) · Zbl 0039.07202
[24] Fyrillas, M. M.: Heat conduction in a solid slab embedded with a pipe of general cross-section: shape factor and shape optimization, Int. J. Eng. sci. 46, 907 (2008) · Zbl 1213.74251 · doi:10.1016/j.ijengsci.2008.03.004
[25] Fyrillas, M. M.: Advection-dispersion mass transport associated with a non-aqueous-phase liquid pool, J. fluid mech. 413, 49 (2000) · Zbl 0955.76087 · doi:10.1017/S0022112000008053
[26] COMSOL, Heat Transfer Module, COMSOL Multiphysics User’s Guide, 2008. Version 3.4, COMSOL AB, Stockholm, Sweden.
[27] Abramowitz, M.; Stegun, I.: Handbook of mathematical functions, (1964) · Zbl 0171.38503
[28] Knopp, K.: Theory and application of infinite series, (1951) · Zbl 0042.29203
[29] Beck, J. V.; Wright, N. T.; Haji-Sheikh, A.; Cole, K. D.; Amos, E.: Conduction in rectangular plates with boundary temperatures specified, Int. J. Heat mass transfer 51, 4676 (2008) · Zbl 1154.80308 · doi:10.1016/j.ijheatmasstransfer.2008.02.020
[30] Ewald, P. P.: Die berechnung optischer und elektrostatistischer gitterpotentiale, Ann. phys. 64, 253 (1921) · JFM 48.0566.02
[31] Kreyszig, E.: Advanced engineering mathematics, (1988) · Zbl 0103.27803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.