×

Linear modes for channels of constant cross-section and approximate Dirichlet-Neumann operators. (English) Zbl 1454.76030

Summary: We study normal modes for the linear water wave problem in infinite straight channels of bounded constant cross-section. Our goal is to compare semi-analytic normal mode solutions known in the literature for special triangular cross-sections, namely isosceles triangles of equal angle of \(45^{\circ}\) and \(60^{\circ}\), see [H. Lamb, Hydrodynamics. 6th ed. Cambridge: Cambridge University Press (1932; JFM 58.1298.04); H. M. Macdonald, Proc. Lond. Math. Soc. 25, 101–111 (1894; JFM 25.1479.01), A. G. Greenhill, “Wave motion in hydrodynamics”, Am. J. Math. 9, No. 2, 97–112 (1887; doi:10.2307/2369329); B. A. Packham, Q. J. Mech. Appl. Math. 33, 179–187 (1980; Zbl 0442.76013)], and [M. D. Groves, Q. J. Mech. Appl. Math. 47, No. 3, 367–404 (1994; Zbl 0868.76013)], to numerical solutions obtained using approximations of the non-local Dirichlet-Neumann operator for linear waves, specifically an ad-hoc approximation proposed in [R. M. Vargas-Magaña and P. Panayotaros, Wave Motion 65, 156–174 (2016; Zbl 1467.76019)], and a first-order truncation of the systematic depth expansion by W. Craig et al. [Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 461, No. 2055, 839–873 (2005; Zbl 1145.76325)]. We consider cases of transverse (i.e. 2-D) modes and longitudinal modes, i.e. 3-D modes with sinusoidal dependence in the longitudinal direction. The triangular geometries considered have slopping beach boundaries that should in principle limit the applicability of the approximate Dirichlet-Neumann operators. We nevertheless see that the approximate operators give remarkably close results for transverse even modes, while for odd transverse modes we have some discrepancies near the boundary. In the case of longitudinal modes, where the theory only yields even modes, the different approximate operators show more discrepancies for the first two longitudinal modes and better agreement for higher modes. The ad-hoc approximation is generally closer to exact modes away from the boundary.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Aceves-Sánchez, P.; Minzoni, AA; Panayotaros, P., Numerical study of a nonlocal model for water-waves with variable depth, Wave Motion, 50, 1, 80-93 (2013) · Zbl 1360.76197 · doi:10.1016/j.wavemoti.2012.07.002
[2] Andrade, D.; Nachbin, A., A three-dimensional Dirichlet-to-Neumann operator for water waves over topography, J. Fluid Mech., 845, 321-345 (2018) · Zbl 1404.76033 · doi:10.1017/jfm.2018.241
[3] Athanassoulis A. G., Papoutsellis Ch. E.: Exact semi-separation of variables in wave guides with nonplanar boundaries Proc. R. Soc. London A, 473, 20170017 · Zbl 1404.78031
[4] Carter, JD, Bidirectional Whitham equations as models of waves in shallow water, Wave Motion, 82, 51-62 (2018) · Zbl 1524.35519 · doi:10.1016/j.wavemoti.2018.07.004
[5] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181, 2, 229-243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[6] Craig, W.; Groves, MD, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19, 4, 367-389 (1994) · Zbl 0929.76015 · doi:10.1016/0165-2125(94)90003-5
[7] Craig, Walter; Guyenne, Philippe; Nicholls, David P.; Sulem, Catherine, Hamiltonian long-wave expansions for water waves over a rough bottom, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461, 2055, 839-873 (2005) · Zbl 1145.76325 · doi:10.1098/rspa.2004.1367
[8] Craig, W.; Sulem, C., Numerical simulation of gravity waves, J. Comput. Phys., 108, 1, 73-83 (1993) · Zbl 0778.76072 · doi:10.1006/jcph.1993.1164
[9] Craig, W.; Gazeau, M.; Lacave, C.; Sulem, C., Bloch theory and spectral gaps for linearized water waves, SIAM J. Math. Anal., 50, 5, 5477-5501 (2018) · Zbl 1401.76035 · doi:10.1137/17M113561X
[10] Ehrnström, M.; Kalisch, H., Traveling waves for the Whitham equation, Differ. Int. Equ., 22, 11-12, 1193-1210 (2009) · Zbl 1240.35449
[11] Ehrnström, M.; Groves, MD; Wahlénn, E., On the existence and stability of solitary-wave solutions to a class of evolution equations of whitham type, Nonlinearity, 25, 10, 2903 (2012) · Zbl 1252.76014 · doi:10.1088/0951-7715/25/10/2903
[12] Evans, DV; Linton, CM, Sloshing frequencies, Quart. J. Mech. Appl. Math., 46, 1, 71-87 (1993) · Zbl 0774.76015 · doi:10.1093/qjmam/46.1.71
[13] Greenhill, A.G.: Wave motion in hydrodynamics (continued). Am. J. Math. 97-112, (1887)
[14] Groves, MD, Hamiltonian long-wave theory for water waves in a channel, Quart. J. Mech. Appl. Math., 47, 367-404 (1994) · Zbl 0868.76013 · doi:10.1093/qjmam/47.3.367
[15] Gouin M., Ducrozet G., Ferrant P.: Development and validation of a highly nonlinear model for wave propagation over a variable bathymetry. In: ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, pages V007T06A077-V007T06A077. American Society of Mechanical Engineers (2015)
[16] Guyenne, P.; Nicholls, DP, Numerical simulations of solitary waves on plane slopes, Math. Comput. Simul., 69, 3, 269-281 (2005) · Zbl 1115.76019 · doi:10.1016/j.matcom.2005.01.005
[17] Guyenne, P.; Nicholls, DP, A high-order spectral method for nonlinear water waves over moving bottom topography, SIAM J. Sci. Comput., 30, 1, 81-101 (2007) · Zbl 1157.76034 · doi:10.1137/060666214
[18] Hur, VM; Tao, L., Wave breaking in shallow water model, SIAM J. Math. Anal., 50, 354-380 (2018) · Zbl 1390.35271 · doi:10.1137/15M1053281
[19] Hur, VM, Wave breaking in the Whitham equation, Adv. Math., 317, 410-437 (2017) · Zbl 1375.35446 · doi:10.1016/j.aim.2017.07.006
[20] Kuznetsov, N.; Maz’ya, V.; Vainberg, B., Linear water waves: a mathematical approach (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 0996.76001
[21] Lamb, H., Hydrodynamics (1932), Cambridge: Cambridge University Press, Cambridge · JFM 58.1298.04
[22] Lannes D.: The water wave problem. Mathematical Surveys and Monographs, AMS, 188 (2013) · Zbl 1410.35003
[23] Macdonald, HM, Waves in canals, Proc. Lond. Math. Soc., 1, 1, 101-113 (1893) · JFM 25.1479.01 · doi:10.1112/plms/s1-25.1.101
[24] Miles, JW, On Hamilton’s principle for surface waves, J. Fluid Mech., 83, 1, 153-158 (1977) · Zbl 0377.76014 · doi:10.1017/S0022112077001104
[25] Moldabayev, D.; Kalisch, H.; Dutykh, D., The Whitham Equation as a model for surface water waves, Physica D: Nonlinear Phenomena, 309, 99-107 (2015) · Zbl 1364.76032 · doi:10.1016/j.physd.2015.07.010
[26] Moler, C.B.: Numerical Computing with MATLAB: Revised Reprint. Siam (2008)
[27] Naumkin P.I., Shishmarev J.A.: Nonlinear nonlocal equations in the theory of waves. A.M.S. (1994) · Zbl 0802.35002
[28] Packham, BA, Small-amplitude waves in a straight channel of uniform triangular cross-section, Quart. J. Mech. Appl. Math., 33, 2, 179-187 (1980) · Zbl 0442.76013 · doi:10.1093/qjmam/33.2.179
[29] Papoutsellis, CHE; Charalampopoulos, AG; Athanassoulis, AG, Implementation of a fully nonlinear Hamiltonian coupled mode theory, and application to solitary wave problem over bathymetry, Eur. J. Mech. B Fluids, 72, 199-224 (2018) · Zbl 1408.76084 · doi:10.1016/j.euromechflu.2018.04.015
[30] Porter, D.; Staziker, DJ, Extensions of the mild slope equation, J. Fluid Mech., 300, 367-382 (1995) · Zbl 0848.76010 · doi:10.1017/S0022112095003727
[31] Radder, AC, An explicit Hamiltonian formulation of surface waves in water of finite depth, J. Fluid Mech., 237, 435-455 (1992) · Zbl 0747.76025 · doi:10.1017/S0022112092003483
[32] Vargas-Magaña, RM; Panayotaros, P., A Whitham-Boussinesq long-wave model for variable topography, Wave Motion, 65, 156-174 (2016) · Zbl 1467.76019 · doi:10.1016/j.wavemoti.2016.04.013
[33] Whitham, GB, Linear and nonlinear waves (2011), Hoboken: Wiley, Hoboken
[34] Wilkening, J.; Vasan, V., Comparison of five methods to compute the Dirichlet-Neumann operator for the water wave problem, Contemp. Math., 635, 175-210 (2015) · Zbl 1325.76029 · doi:10.1090/conm/635/12713
[35] Zakharov, VE, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 2, 190-194 (1968) · doi:10.1007/BF00913182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.