×

Numerical simulation of solitary waves on plane slopes. (English) Zbl 1115.76019

Summary: We present a numerical method for the computation of surface water waves over bottom topography. It is based on a series expansion representation of the Dirichlet-Neumann operator in terms of the surface and bottom variations. This method is computationally very efficient using the fast Fourier transform. As an application, we perform computations of solitary waves propagating over plane slopes and compare the results with those obtained from a boundary element method. A good agreement is found between the two methods.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
76M12 Finite volume methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Agnon, Y.; Bingham, H. B., A non-periodic spectral method with application to nonlinear water waves, Eur. J. Mech. B Fluids, 18, 527-534 (1999) · Zbl 0938.76073
[2] Bateman, W. J.D.; Swan, C.; Taylor, P. H., On the efficient numerical simulation of directionally spread surface water waves, J. Comput. Phys., 174, 277-305 (2001) · Zbl 1106.86300
[3] Calderón, A. P., Cauchy integrals on Lipschitz curves and related operators, Proc. Natl. Acad. Sci. USA, 75, 1324-1327 (1977) · Zbl 0373.44003
[4] R. Coifman, Y. Meyer, Nonlinear harmonic analysis and analytic dependence, in: Proceedings of the Conference on Pseudodifferential Operators and Applications, Notre Dame, IN, 1984, Amer. Math. Soc., 1985, pp. 71-78.; R. Coifman, Y. Meyer, Nonlinear harmonic analysis and analytic dependence, in: Proceedings of the Conference on Pseudodifferential Operators and Applications, Notre Dame, IN, 1984, Amer. Math. Soc., 1985, pp. 71-78. · Zbl 0587.35004
[5] W. Craig, P. Guyenne, D.P. Nicholls, C. Sulem, Hamiltonian long wave expansions for water waves over a rough bottom, Proc. R. Soc. A 461 (2005) 839-873.; W. Craig, P. Guyenne, D.P. Nicholls, C. Sulem, Hamiltonian long wave expansions for water waves over a rough bottom, Proc. R. Soc. A 461 (2005) 839-873. · Zbl 1145.76325
[6] Craig, W.; Nicholls, D. P., Traveling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., 32, 2, 323-359 (2000) · Zbl 0976.35049
[7] Craig, W.; Nicholls, D. P., Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids, 21, 615-641 (2002) · Zbl 1084.76509
[8] Craig, W.; Schanz, U.; Sulem, C., The modulation regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. Henri Poincaré, 14, 615-667 (1997) · Zbl 0892.76008
[9] Craig, W.; Sulem, C., Numerical simulation of gravity waves, J. Comput. Phys., 108, 73-83 (1993) · Zbl 0778.76072
[10] Dold, J. W.; Peregrine, D. H., An efficient boundary integral method for steep unsteady water waves, (Morton, K. W.; Baines, M. J., Numer. Meth. for Fluid Dynamics II (1986)), 671-679 · Zbl 0606.76023
[11] Dommermuth, D. G.; Yue, D. K.P., A high-order spectral method for the study of nonlinear gravity waves, J. Fluid Mech., 184, 267-288 (1987) · Zbl 0638.76016
[12] M. Frigo, S.G. Johnson, The fastest Fourier transform in the West, MIT-LCS-TR-728. http://www.theory.lcs.mit.edu/fftw/; M. Frigo, S.G. Johnson, The fastest Fourier transform in the West, MIT-LCS-TR-728. http://www.theory.lcs.mit.edu/fftw/
[13] Grilli, S. T.; Guyenne, P.; Dias, F., A fully nonlinear model for three-dimensional overturning waves over arbitrary bottom, Int. J. Numer. Meth. Fluids, 35, 829-867 (2001) · Zbl 1039.76043
[14] Grilli, S. T.; Horrillo, J., Numerical generation and absorption of fully nonlinear periodic waves, J. Eng. Mech., 123, 1060-1069 (1997)
[15] Grilli, S. T.; Subramanya, R.; Svendsen, I. A.; Veeramony, J., Shoaling of solitary waves on plane beaches, J. Waterway Port Coastal Ocean Eng., 120, 609-628 (1994)
[16] Grilli, S. T.; Svendsen, I. A.; Subramanya, R., Breaking criterion and characteristics for solitary waves on slopes, J. Waterway, Port, Coastal, Ocean Eng., 123, 102-112 (1997)
[17] Liu, Y.; Yue, D. K.P., On generalized Bragg scattering of surface waves by bottom ripples, J. Fluid Mech., 356, 297-356 (1998) · Zbl 0908.76014
[18] Longuet-Higgins, M. S.; Cokelet, E. D., The deformation of steep surface waves on water. I. A numerical method of computation, Proc. Roy. Soc. Lond. A, 350, 1-26 (1976) · Zbl 0346.76006
[19] Nicholls, D. P., Traveling water waves: spectral continuation methods with parallel implementation, J. Comput. Phys., 143, 224-240 (1998) · Zbl 0921.76122
[20] Nicholls, D. P.; Reitich, F., A new approach to analyticity of Dirichlet-Neumann operators, Proc. Roy. Soc. Edin. Sect. A, 131, 6, 1411-1433 (2001) · Zbl 1016.35030
[21] Nicholls, D. P.; Reitich, F., Stability of high-order perturbative methods for the computation of Dirichlet-Neumann operators, J. Comput. Phys., 170, 276-298 (2001) · Zbl 0983.65115
[22] Nicholls, D. P.; Reitich, F., Analytic continuation of Dirichlet-Neumann operators, Numer. Math., 94, 1, 107-146 (2003) · Zbl 1030.65109
[23] Smith, R., An operator expansion formulation for nonlinear surface water waves over variable depth, J. Fluid Mech., 363, 333-347 (1998) · Zbl 0911.76011
[24] Tanaka, M., The stability of solitary waves, Phys. Fluids, 29, 650-655 (1986) · Zbl 0605.76025
[25] West, B. J.; Brueckner, K. A.; Janda, R. S.; Milder, D. M.; Milton, R. L., A new numerical method for surface hydrodynamics, J. Geophys. Res., 92, 11803-11824 (1987)
[26] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.