×

On cusp forms for co-finite subgroups of PSL(2,\({\mathbb{R}})\). (English) Zbl 0558.10017

Let \(\Gamma\) be a finitely generated Fuchsian group of the first kind acting on the upper half-plane \({\mathfrak H}\), and let \(\Delta\) denote the Laplace-Beltrami operator for the hyperbolic metric acting on its natural domain in \(L^ 2(\Gamma \setminus {\mathfrak H})\). Suppose that \(\Gamma\) \(\setminus {\mathfrak H}\) is not compact. Then the so-called Roelcke-Selberg conjecture asserts that there exist infinitely many linearly independent cusp eigenfunctions of \(\Delta\). This conjecture is known to be true in many special cases, but for generic \(\Gamma\) it is still an open problem.
In the paper under review the authors consider the behaviour of a given cusp form u under a quasiconformal deformation of the group \(\Gamma\) and they investigate the problem whether u may be destroyed under such a real analytic deformation. The main result is Theorem 2.1 which gives a sufficient condition which ensures that for all sufficiently small \(t>0\) the deformed group \(\Gamma_ t\) has no cusp form whose eigenvalue is near the eigenvalue \(\lambda_ 0\) for u. The deformations considered here are defined by means of Beltrami differentials associated with weight 4 holomorphic cusp forms Q for \(\Gamma\). In fact, the authors even prove that except for a denumerable set of values of t, no new cusp forms are created by such deformations.
The sufficient condition of Theorem 2.1 is reformulated in Theorem 3.1 in terms of the Rankin-Selberg convolution of Q and u. The authors also give some examples and numerical calculations which indicate that for generic \(\Gamma\) the Roelcke-Selberg conjecture may be false.
Reviewer: J.Elstrodt

MSC:

11F03 Modular and automorphic functions
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)

References:

[1] [A] Ahlfors, L.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math.74, 171 (1961) · Zbl 0146.30602 · doi:10.2307/1970309
[2] [C] Colin de Verdiere, Y.: Pseudo-Laplacians i and II. Ann. Inst. Fourier32, 275-286 (1983);33, 87-113 (1983)
[3] [D] Doi, K., Naganuma, H.: On the functional equation of certain Dirichlet series. Invent. math.9, 1-14 (1969) · Zbl 0182.54301 · doi:10.1007/BF01389886
[4] [D, I, P, S] Deshouillers, J.M., Iwaniec, H., Phillips, R., Sarnak, P.: On Maass cusp forms. To appear · Zbl 0566.10017
[5] [E] Efrat, I.: Selberg trace formula rigidity and cusp forms. Thesis, New York University (1983)
[6] [G] Gradshteyn, I., Ryzhik, I.: Tables of integrals and products. New York: Academic Press 1980 · Zbl 0521.33001
[7] [H] Hardy, G.: Sur les zeros de fonction ?(s) de Riemann. Cr.158, 1012-14 (1914) · JFM 45.0716.04
[8] [He] Hecke, E.: Eine neue Art von Zetafunktionen. Math. Z.6, 11-51, 249-288 (1920) · JFM 47.0152.01 · doi:10.1007/BF01202991
[9] [H1] Hejhal, D.A.: The Selberg trace formula forPSL(2,?). S.P.L., Vol. 2, pp. 1001, 1983
[10] [H2] Hejhal, D.A.: Continuity method. Proc. 1983, Durham Symposium on Modular Forms and Functions
[11] [K] Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0148.12601
[12] [Ku] Kubota, T.: Elementary theory of Eisenstein series. Tokyo: Kodansha 1973 · Zbl 0268.10012
[13] [L] Lax, P., Phillips, R.: Scattering theory for automorphic functions. Ann. Math. Stud.87, 300 (1976) · Zbl 0362.10022
[14] [M] Maass, H.: Über eine neue Art von nichtanalytischen Automorphismen. Math. Ann.121, 141-183 (1949) · Zbl 0034.31702 · doi:10.1007/BF01329622
[15] [Mo] Moroz, B.Z.: On the convolution of HeckeL functions. Mathematika27, 312-320 (1980) · doi:10.1112/S0025579300010172
[16] [O] Ogg, A.: Dirichlet serles and modular forms. New York: Benjamin 1969 · Zbl 0191.38101
[17] [P] Petersson, H.: Einheitliche Begründung der Vollständigkeitssätze. Art. Abh. Math. Sem., Hamburg14, 22-60 (1941) · Zbl 0025.04603 · doi:10.1007/BF02940741
[18] [P, S] Phillips, R., Sarnak, P.: The Weyl theorem and the deformation of discrete groups. To appear · Zbl 0614.10027
[19] [S] Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math.29, 783-804 (1976) · Zbl 0348.10015 · doi:10.1002/cpa.3160290618
[20] [V] Venkov, A.B.: Spectral theory of automorphic functions. Proc. Steklov. Inst. Math.4, 163 (1982) · Zbl 0501.10029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.