×

Characterizations of higher rank hyperbolicity. (English) Zbl 1535.53043

Gromov hyperbolicity can be seen as a natural generalization of the concept of a simply connected manifold with negative curvature in the quasi-isometric setting. Analogous to that, this article provides a quasi-isometric generalization of the notion of simply connected manifolds with non-positive curvature. Just like the case of Gromov hyperbolicity, this notion can be characterized via isoperimetric inequalities, slim simplex properties, the Morse lemma and bounded filling radius. The article shows that these characterizations are all equivalent. One of the equivalences, namely the implication from bounded rank to a linear isoperimetric inequality, was a long standing open problem.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
51F30 Lipschitz and coarse geometry of metric spaces
20F67 Hyperbolic groups and nonpositively curved groups

References:

[1] Ambrosio, L.; Kirchheim, B., Currents in metric spaces, Acta Math., 185, 1-80 (2000) · Zbl 0984.49025 · doi:10.1007/BF02392711
[2] Basso, G.; Wenger, S.; Young, R., Undistorted fillings in subsets of metric spaces, Adv. Math., 423, 54 (2023) · Zbl 1519.53032 · doi:10.1016/j.aim.2023.109024
[3] Bonk, M., Quasi-geodesic segments and Gromov hyperbolic spaces, Geom. Dedic., 62, 281-298 (1996) · Zbl 0864.53031 · doi:10.1007/BF00181569
[4] Bowditch, B.H.: Notes on Gromov’s hyperbolicity criterion for path-metric spaces. In: Ghys, É., Haefliger, A., Verjovsky, A. (eds.), Group Theory from a Geometrical Viewpoint, pp. 64-167. World Scientific (1991) · Zbl 0843.20031
[5] Bowditch, BH, A short proof that a subquadratic isoperimetric inequality implies a linear one, Mich. Math. J., 42, 103-107 (1995) · Zbl 0835.53051 · doi:10.1307/mmj/1029005156
[6] Bridson, MR; Haefliger, A., Metric Spaces of Non-Positive Curvature (1999), Berlin: Springer, Berlin · Zbl 0988.53001 · doi:10.1007/978-3-662-12494-9
[7] Buyalo, S., Schroeder, V.: Elements of Asymptotic Geometry. Europ. Math. Soc. (2007) · Zbl 1125.53036
[8] Chalopin, J., Chepoi, V., Genevois, A., Hirai, H., Osajda, D.: Helly groups. Geom. Topol. arXiv:2002.06895 [math.GR]
[9] Coornaert, M., Delzant, T., Papadopoulos, A.: Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov. Lecture Notes in Math., vol. 1441. Springer (1990) · Zbl 0727.20018
[10] Descombes, D., Asymptotic rank of spaces with bicombings, Math. Z., 284, 947-960 (2016) · Zbl 1360.53078 · doi:10.1007/s00209-016-1680-3
[11] Descombes, D.; Lang, U., Convex geodesic bicombings and hyperbolicity, Geom. Dedic., 177, 367-384 (2015) · Zbl 1343.53036 · doi:10.1007/s10711-014-9994-y
[12] Edwards, DA, On the Kantorovich-Rubinstein theorem, Expo. Math., 29, 387-398 (2011) · Zbl 1236.49085 · doi:10.1016/j.exmath.2011.06.005
[13] Epstein, DBA, Word Processing in Groups (1992), Burlington: Jones and Bartlett, Burlington · Zbl 0764.20017 · doi:10.1201/9781439865699
[14] Federer, H., Geometric Measure Theory (1969), Berlin: Springer, Berlin · Zbl 0176.00801
[15] Federer, H.; Fleming, WH, Normal and integral currents, Ann. Math., 72, 458-520 (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[16] Ghys, É., de la Harpe, P. (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, vol. 83. Birkhäuser (1990) · Zbl 0731.20025
[17] Goldhirsch, T., Lipschitz chain approximation of metric integral currents, Anal. Geom. Metr. Spaces, 10, 40-49 (2022) · Zbl 1509.49022 · doi:10.1515/agms-2022-0140
[18] Gromov, M., Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53, 53-73 (1981) · Zbl 0474.20018 · doi:10.1007/BF02698687
[19] Gromov, M., Filling Riemannian manifolds, J. Differ. Geom., 18, 1-147 (1983) · Zbl 0515.53037 · doi:10.4310/jdg/1214509283
[20] Gromov, M.: Hyperbolic groups. In: Gersten, S. (ed.), Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, pp. 75-263. Springer (1987) · Zbl 0634.20015
[21] Gromov, M.: Asymptotic invariants of infinite groups. In: Niblo, A., Roller, M.A. (eds.), Geometric Group Theory, London Math. Soc. Lect. Notes Ser., vol. 182, pp. 1-295. Cambridge Univ. Press (1993) · Zbl 0841.20039
[22] Haettel, T.: Lattices, injective metrics and the \(K(\pi ,1)\) conjecture. arXiv:2109.07891 [math.GR] · Zbl 1521.20074
[23] Huang, J.; Kleiner, B.; Stadler, S., Morse quasiflats I, J. Reine Angew. Math., 784, 53-129 (2022) · Zbl 1501.53055 · doi:10.1515/crelle-2021-0073
[24] Huang, J.; Osajda, D., Helly meets Garside and Artin, Invent. Math., 225, 395-426 (2021) · Zbl 1482.20023 · doi:10.1007/s00222-021-01030-8
[25] Isleifsson, H.: Linear isoperimetric inequality for homogeneous Hadamard manifolds. J. Anal. Topol. (2023). doi:10.1142/S1793525323500334. arXiv:2203.09166 [math.DG]
[26] Jørgensen, M., Lang, U.: A combinatorial higher-rank hyperbolicity condition. arXiv:2206.08153 [math.MG]
[27] Kleiner, B., The local structure of length spaces with curvature bounded above, Math. Z., 231, 409-456 (1999) · Zbl 0940.53024 · doi:10.1007/PL00004738
[28] Kleiner, B.; Lang, U., Higher rank hyperbolicity, Invent. Math., 221, 597-664 (2020) · Zbl 1446.51006 · doi:10.1007/s00222-020-00955-w
[29] Lang, U., Local currents in metric spaces, J. Geom. Anal., 21, 683-742 (2011) · Zbl 1222.49055 · doi:10.1007/s12220-010-9164-x
[30] Lang, U., Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal., 5, 297-331 (2013) · Zbl 1292.20046 · doi:10.1142/S1793525313500118
[31] Leuzinger, E., Optimal higher-dimensional Dehn functions for some CAT(0) lattices, Groups Geom. Dyn., 8, 441-466 (2014) · Zbl 1343.20046 · doi:10.4171/GGD/233
[32] Osajda, D., Valiunas, M.: Helly groups, coarsely Helly groups, and relative hyperbolicity. Trans. Am. Math. Soc. doi:10.1090/tran/8727. arXiv:2012.03246 [math.GR] · Zbl 07875997
[33] Papasoglu, P.: On the sub-quadratic isoperimetric inequality. In: Charney, R., Davis, M., Shapiro M. (eds.), Geometric Group Theory, Ohio State Univ. Math. Res. Inst. Publ., vol. 3. de Gruyter, pp. 149-157 (1995) · Zbl 0849.20026
[34] Short, H.: (ed.), Notes on word hyperbolic groups. In: Ghys, É., Haefliger, A., Verjovsky A. (eds.), Group Theory from a Geometrical Viewpoint, pp. 3-63. World Scientific (1991) · Zbl 0809.00017
[35] Väisälä, J., Gromov hyperbolic spaces, Expo. Math., 23, 187-231 (2005) · Zbl 1087.53039 · doi:10.1016/j.exmath.2005.01.010
[36] Wenger, S., Isoperimetric inequalities of Euclidean type in metric spaces, Geom. Funct. Anal., 15, 534-554 (2005) · Zbl 1084.53037 · doi:10.1007/s00039-005-0515-x
[37] Wenger, S., Flat convergence for integral currents in metric spaces, Calc. Var. Partial Differ. Equ., 28, 139-160 (2007) · Zbl 1110.53030 · doi:10.1007/s00526-006-0034-0
[38] Wenger, S., Gromov hyperbolic spaces and the sharp isoperimetric constant, Invent. Math., 171, 227-255 (2008) · Zbl 1147.53036 · doi:10.1007/s00222-007-0084-8
[39] Wenger, S., Compactness for manifolds and integral currents with bounded diameter and volume, Calc. Var. Partial Differ. Equ., 40, 423-448 (2011) · Zbl 1211.49052 · doi:10.1007/s00526-010-0346-y
[40] Wenger, S., The asymptotic rank of metric spaces, Comment. Math. Helv., 86, 247-275 (2011) · Zbl 1217.49033 · doi:10.4171/CMH/223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.