×

Convex geodesic bicombings and hyperbolicity. (English) Zbl 1343.53036

Given a geodesic metric space \(X\), a geodesic bicombing maps each pair of points of \(X\) to a geodesic connecting them. The paper under review discusses and compares three different convexity notions of such geodesic bicombings – namely: convex and consistent, convex, conical. Busemann spaces, hence \(\mathrm{CAT}(0)\) spaces, always admit a geodesic bicombing which is convex and consistent. Also, for uniquely geodesic metric spaces, the three notions are equivalent. The authors prove that in metric spaces of finite combinatorial dimension in the sense of A. W. M. Dress [Adv. Math. 53, 321–402 (1984; Zbl 0562.54041)] convex geodesic bicombings are always unique and consistent (if they exist). This can be applied to the injective hull of a finitely generated Gromov hyperbolic group (endowed with the word metric) to construct a proper finite-dimensional metric space with a unique convex and consistent geodesic bicombing on which the group acts properly and cocompactly by isometries.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups

Citations:

Zbl 0562.54041

References:

[1] Alexander, S.B., Bishop, R.L.: The Hadamard-Cartan theorem in locally convex metric spaces. Enseign. Math. 36, 309-320 (1990) · Zbl 0718.53055
[2] Ballmann, W.: Lectures on Spaces of Nonpositive Curvature. Birkhäuser, Switzerland (1995) · Zbl 0834.53003
[3] Bestvina, M., Mess, G.: The boundary of negatively curved groups. J. Am. Math. Soc. 4, 469-481 (1991) · Zbl 0767.20014 · doi:10.1090/S0894-0347-1991-1096169-1
[4] Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999) · Zbl 0988.53001 · doi:10.1007/978-3-662-12494-9
[5] Buyalo, S., Schroeder, V.: Elements of Asymptotic Geometry. EMS Monographs in Mathematics. EMS Publishing House, Zurich, Switzerland (2007) · Zbl 1125.53036
[6] Cianciaruso, F., De Pascale, E.: Discovering the algebraic structure on the metric injective envelope of a real Banach space. Topol. Appl. 78, 285-292 (1997) · Zbl 0912.46072 · doi:10.1016/S0166-8641(96)00157-5
[7] Dress, A.W.M.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math. 53, 321-402 (1984) · Zbl 0562.54041 · doi:10.1016/0001-8708(84)90029-X
[8] Dugundji, J.: Absolute neighborhood retracts and local connectedness in arbitrary metric spaces. Compositio Math. 13, 229-246 (1958) · Zbl 0089.38903
[9] Dugundji, J.: Locally equiconnected spaces and absolute neighborhood retracts. Fund. Math. 57, 187-193 (1965) · Zbl 0151.30301
[10] Foertsch, T., Lytchak, A.: The de Rham decomposition theorem for metric spaces. Geom. Funct. Anal. 18, 120-143 (2008) · Zbl 1159.53026 · doi:10.1007/s00039-008-0652-0
[11] Gromov, M.: Hyperbolic groups. In: S.M. Gersten (ed.) Essays in Group Theory, vol. 8, pp. 75-263. Math. Sci. Res. Inst. Publ., Springer, Berlin (1987) · Zbl 0634.20015
[12] Himmelberg, C.J.: Some theorems on equiconnected and locally equiconnected spaces. Trans. Am. Math. Soc. 115, 43-53 (1965) · Zbl 0134.18703 · doi:10.1090/S0002-9947-1965-0195038-X
[13] Hitzelberger, P., Lytchak, A.: Spaces with many affine functions. Proc. Am. Math. Soc. 135, 2263-2271 (2007) · Zbl 1128.53021 · doi:10.1090/S0002-9939-07-08728-X
[14] Isbell, J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65-76 (1964) · Zbl 0151.30205 · doi:10.1007/BF02566944
[15] Isbell, J.R.: Injective envelopes of Banach spaces are rigidly attached. Bull. Am. Math. Soc. 70, 727-729 (1964) · Zbl 0128.34503 · doi:10.1090/S0002-9904-1964-11192-7
[16] Kelley, J.L.: Banach spaces with the extension property. Trans. Am. Math. Soc. 72, 323-326 (1952) · Zbl 0046.12002 · doi:10.1090/S0002-9947-1952-0045940-5
[17] Kleiner, B.: The local structure of length spaces with curvature bounded above. Math. Z. 231, 409-456 (1999) · Zbl 0940.53024 · doi:10.1007/PL00004738
[18] Lang, U.: Injective hulls of certain discrete metric spaces and groups. J. Topol. Anal. 5, 297-331 (2013) · Zbl 1292.20046 · doi:10.1142/S1793525313500118
[19] Nachbin, L.: A theorem of the Hahn-Banach type for linear transformations. Trans. Am. Math. Soc. 68, 28-46 (1950) · Zbl 0035.35402 · doi:10.1090/S0002-9947-1950-0032932-3
[20] Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6. European Mathematical Society (EMS), Zurich, Switzerland (2005) · Zbl 1115.53002
[21] Rao, N.V.: The metric injective hulls of normed spaces. Topol. Appl. 46, 13-21 (1992) · Zbl 0920.46050 · doi:10.1016/0166-8641(92)90036-Y
[22] Sakai, K.: Geometric Aspects of General Topology, Springer Monographs in Mathematics. Springer, Berlin (2013) · Zbl 1280.54001 · doi:10.1007/978-4-431-54397-8
[23] Toruńczyk, H.: Concerning locally homotopy negligible sets and characterization of \[l_2\] l2-manifolds. Fund. Math. 101, 93-110 (1978) · Zbl 0406.55003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.