×

Compactness for manifolds and integral currents with bounded diameter and volume. (English) Zbl 1211.49052

Summary: By Gromov’s compactness theorem for metric spaces, every uniformly compact sequence of metric spaces admits an isometric embedding into a common compact metric space in which a subsequence converges with respect to the Hausdorff distance. Working in the class of oriented \(k\)-dimensional Riemannian manifolds (with boundary) and, more generally, integral currents in metric spaces in the sense of Ambrosio-Kirchheim and replacing the Hausdorff distance with the filling volume or flat distance, we prove an analogous compactness theorem in which however we only assume uniform bounds on volume and diameter.

MSC:

49Q15 Geometric measure and integration theory, integral and normal currents in optimization
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[1] Ambrosio L., Kirchheim B.: Currents in metric spaces. Acta Math. 185(1), 1–80 (2000) · Zbl 0984.49025 · doi:10.1007/BF02392711
[2] Bridson M., Haefliger A.: Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften 319. Springer-Verlag, Berlin (1999) · Zbl 0988.53001
[3] Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997) · Zbl 0902.53034
[4] Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000) · Zbl 1027.53042
[5] Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000) · Zbl 1027.53043
[6] Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[7] Federer H., Fleming W.H.: Normal and integral currents. Ann. Math. (2) 72, 458–520 (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[8] Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Etudes Sci. Publ. Math. No. 53, pp. 53–73 (1981) · Zbl 0474.20018
[9] Gromov M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983) · Zbl 0515.53037
[10] Gromov, M.: Metric Structures for Riemannian and Non-Riemannian spaces, with Appendices by Katz, M., Pansu, P., Semmes, S. Progress in Mathematics, vol. 152. Birkhäuser Boston, Inc., Boston, MA (1999) · Zbl 0953.53002
[11] Grove, K., Petersen, P., Wu, J.Y.: Geometric finiteness theorems via controlled topology. Invent. Math. 99(1):205–213 (1990), (Erratum in Invent. Math. 104(1):221–222 (1991)) · Zbl 0747.53033
[12] Lang, U.: Local currents in metric spaces. To appear in J. Geom. Anal. · Zbl 1222.49055
[13] Petersen P.: A finiteness theorem for metric spaces. J. Differ. Geom. 31(2), 387–395 (1990) · Zbl 0696.55005
[14] Sormani, C., Wenger, S.: Weak convergence of currents and cancellation, with an appendix by Schul, R. and the second author, Calc. Var. Partial Differ. Equ. 38(1–2):183–206 (2010) · Zbl 1192.53049
[15] Wenger S.: Isoperimetric inequalities of Euclidean type in metric spaces. Geom. Funct. Anal. 15(2), 534–554 (2005) · Zbl 1084.53037 · doi:10.1007/s00039-005-0515-x
[16] Wenger, S.: Filling invariants at infinity and the Euclidean rank of Hadamard spaces, Int. Math. Res. Notices Volume 2006, Article ID 83090, 33 pp (2006) · Zbl 1107.53026
[17] Wenger S.: Flat convergence for integral currents in metric spaces. Calc. Var. Partial Differ. Equ. 28(2), 139–160 (2007) · Zbl 1110.53030 · doi:10.1007/s00526-006-0034-0
[18] Wenger S.: Gromov hyperbolic spaces and the sharp isoperimetric constant. Invent. Math. 171(1), 227–255 (2008) · Zbl 1147.53036 · doi:10.1007/s00222-007-0084-8
[19] Wenger, S.: The asymptotic rank of metric spaces, to appear in Commentarii Mathematici Helvetici · Zbl 1217.49033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.