×

Hypoelliptic operators in geometry. Abstracts from the workshop held May 21–26, 2023. (English) Zbl 1528.32001

Summary: The workshop titled Hypoelliptic Operators in Geometry was coorganized by Davide Barilari (Padova), Xiaonan Ma (Paris), Nikhil Savale (K\"{}oln) and Yi Wang (Baltimore). It was well attended by 55 participants, with 45 of them being present in person and 10 being online. The participants came from several continents, age groups and included male as well as female researchers. Several interesting themes were discussed including: analysis around Kohn’s Laplacian in CR geometry, analogous covariant operators arising in conformal geometry, the spectral theory of the sub-Riemannian Laplacian, pseudodifferential calculi in non-commutative geometry and the geometric applications of Bismut’s hypoelliptic Laplacians.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
32-06 Proceedings, conferences, collections, etc. pertaining to several complex variables and analytic spaces
58-06 Proceedings, conferences, collections, etc. pertaining to global analysis
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32V20 Analysis on CR manifolds
35H10 Hypoelliptic equations
35H20 Subelliptic equations
35K08 Heat kernel
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
53C17 Sub-Riemannian geometry
53C18 Conformal structures on manifolds
58C40 Spectral theory; eigenvalue problems on manifolds
58J20 Index theory and related fixed-point theorems on manifolds
58J40 Pseudodifferential and Fourier integral operators on manifolds
58J65 Diffusion processes and stochastic analysis on manifolds
Full Text: DOI

References:

[1] P. Langevin. Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris, 146:530-533, 1908. · JFM 39.0847.03
[2] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147-171, 1967. · Zbl 0156.10701
[3] J.-M. Bismut. The hypoelliptic Laplacian on the cotangent bundle. J. Amer. Math. Soc., 18(2):379-476 (electronic), 2005. · Zbl 1065.35098
[4] J.-M. Bismut and G. Lebeau. The hypoelliptic Laplacian and Ray-Singer metrics, volume 167 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2008. · Zbl 1156.58001
[5] J.-M. Bismut. Hypoelliptic Laplacian and orbital integrals, volume 177 of Annals of Math-ematics Studies. Princeton University Press, Princeton, NJ, 2011. · Zbl 1234.58001
[6] J.-M. Bismut, S. Shen, and Z. Wei. Coherent sheaves, superconnections, and RRG. arXiv e-prints, To appear in Progress in Mathematics (Birkhäuser), Feb. 2021. References
[7] Androulidakis, I., Mohsen, O. & Yuncken, R. A pseudodifferential calculus for maximally hypoelliptic operators and the Helffer-Nourrigat conjecture. (2022)
[8] Androulidakis, I. & Skandalis, G. The holonomy groupoid of a singular foliation. J. Reine Angew. Math.. 626 pp. 1-37 (2009) · Zbl 1161.53020
[9] Debord, C. & Skandalis, G. Adiabatic groupoid, crossed product by R × + and pseudodiffer-ential calculus. Adv. Math.. 257 pp. 66-91 (2014) · Zbl 1300.58007
[10] Helffer, B. & Nourrigat, J. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. C. R. Acad. Sci. Paris Sér. A-B. 289, A775-A778 (1979) · Zbl 0446.35031
[11] Helffer, B. & Nourrigat, J. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. (Birkhäuser Boston, Inc., Boston, MA,1985) · Zbl 0568.35003
[12] Helffer, B. & Nourrigat, J. Caracterisation des opérateurs hypoelliptiques homogènes invari-antsà gauche sur un groupe de Lie nilpotent gradué. Comm. Partial Differential Equations. 4, 899-958 (1979), https://doi.org/10.1080/03605307908820115 · Zbl 0423.35040 · doi:10.1080/03605307908820115
[13] Hörmander, L. Hypoelliptic second order differential equations. Acta Math.. 119 pp. 147-171 (1967) · Zbl 0156.10701
[14] Mohsen, O. Tangent groupoid and tangent cones in sub-Riemannian geometry. (arXiv,2022), https://arxiv.org/abs/2212.01652
[15] Mohsen, O. Blow-up groupoid of singular foliations. (2022)
[16] van Erp, E. & Yuncken, R. A groupoid approach to pseudodifferential calculi. J. Reine Angew. Math.. 756 pp. 151-182 (2019) · Zbl 1433.58025
[17] Ismaël Bailleul, Laurent Mesnager, and James Norris. Small-time fluctuations for the bridge of a sub-Riemannian diffusion, Annales Scientifiques de l’École Normale Supérieure. Qua-trième Série 54, no. 3 (2021), 549-586. · Zbl 1489.58012
[18] Rosa Maria Bianchini and Gianna Stefani. Graded approximations and controllability along a trajectory, SIAM Journal on Control and Optimization 28, no. 4 (1990), 903-924. · Zbl 0712.93005
[19] Karen Habermann. Geometry of sub-Riemannian diffusion processes, PhD thesis (2018). Available through the University of Cambridge Repository Apollo.
[20] Karen Habermann. Small-time fluctuations for sub-Riemannian diffusion loops, Probability Theory and Related Fields 171, no. 3-4 (2018), 617-652. · Zbl 1396.58026
[21] Karen Habermann. Small-time fluctuations for the bridge in a model class of hypoelliptic diffusions of weak Hörmander type, Electronic Journal of Probability 24 (2019), Paper 11. References · Zbl 1419.35009
[22] P. Albin and F. Rochon and D. Sher, A Cheeger-Müller theorem for manifolds with wedge singularities, Anal. PDE 15 (2022), 567-642. · Zbl 1496.58005
[23] J.-M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992). · Zbl 0781.58039
[24] J. Cheeger, Analytic torsion and the heat equation, Ann. Math. (2) 109 (1979), 259-322. · Zbl 0412.58026
[25] A. Dar, Intersection R-torsion and analytic torsion for pseudomanifolds., Math. Z. 194, no. 2 (1987), 193-216. · Zbl 0605.57012
[26] U. Ludwig, Comparison between two complexes on a singular space., J. Reine Angew. Math. 724 (2017), 1-52. · Zbl 1367.58009
[27] U. Ludwig, An extension of a theorem by Cheeger and Müller to spaces with isolated conical singularities, Duke Math. J. 169, nr. 13 (2020), 2501-2570. · Zbl 1458.58016
[28] U. Ludwig, Bismut-Zhang theorem and anomaly formula for the Ray-Singer metric for spaces with isolated conical singularities, MPIM Preprint Series 41 (2022), 65 pages.
[29] W. Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math. 28 (1978), 233-305. · Zbl 0395.57011
[30] J. S. Case, The Frank-Lieb approach to sharp Sobolev inequalities, Commun. Contemp. Math. 23 (2021), no. 3, Paper No. 2050015, 16. · Zbl 1470.46055
[31] J. S. Case, Y.-J. Lin, and W. Yuan, Some constructions of formally self-adjoint conformally covariant polydifferential operators, Adv. Math. 401 (2022), Paper No. 108312. · Zbl 1504.53046
[32] J. S. Case, Y.-J. Lin, and W. Yuan, Curved versions of the Ovsienko-Redou operators, Int. Math. Res. Not. IMRN, rnad053.
[33] J. S. Case, Y.-J. Lin, and W. Yuan, Sharp fully nonlinear Sobolev inequalities via the fourht-order Ovsienko-Redou operator, in preparation.
[34] J. S. Case and Y. Wang, Towards a fully nonlinear sharp Sobolev trace inequality, J. Math. Study 53 (2020), no. 4, 402-435. · Zbl 1499.58019
[35] R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Spectral theory, function spaces and inequalities, 2012, 55-67, Oper. Theory Adv. Appl., 219, Birkhäuser/Spring Basel AG, Basel, 2012. · Zbl 1297.39023
[36] R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176 (2012), no. 1, 349-381. · Zbl 1252.42023
[37] A. R. Gover and C. R. Graham, CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1-27. · Zbl 1076.53048
[38] A. R. Gover and B. Ørsted, Universal principles for Kazdan-Warner and Pohozaev-Schoen type identities, Commun. Contemp. Math. 15 (2013), no. 4, 1350002, 27. · Zbl 1315.53026
[39] C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3, 557-565. · Zbl 0726.53010
[40] P. Guan and G. Wang, Geometric inequalities on locally conformally flat manifolds, Duke Math. J. 124 (2004), no. 1, 177-212. · Zbl 1059.53034
[41] Z. Yan, Improved higher-order Sobolev inequalities on CR sphere. arXiv:2203.13873. 2022.
[42] Z. Yan, Improved Sobolev inequalities on CR sphere. arXiv:2301.07170. 2023
[43] J.-M. Bismut, Large deviations and the Malliavin calculus. Birkhäuser Boston, Inc., Boston, MA (1984). · Zbl 0537.35003
[44] R. Léandre, A Varadhan estimate for big order generators. Preprint ISAAC Newton Insti-tute (2022).
[45] R. Léandre, Toward a Wong-Zakai approximation for big order generators. Symmetry 12 (2020), paper 1893.
[46] R. Léandre, The flow theorem for big order generators. Int. J. Modern Physics A.37 (2022),paper 2243016.
[47] C. Afeltra, J.-H. Cheng, A. Malchiodi, P. Yang, , On the variation of the Einstein-Hilbert action in pseudohermitian geometry (with an appendix by Xiaodong Wang), to appear.
[48] J. Bland, Contact geometry and CR structures on S 3 , Acta Math. 172 (1994), no. 1, 1-49. · Zbl 0814.32002
[49] J. Bland, T. Duchamp, Normal forms for convex domains. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 65-81, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991. · Zbl 0742.32017
[50] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Communications on Pure and Applied Mathematics 27.5 (1974): 585-639. · Zbl 0294.35020
[51] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, JournéesÉquations aux Dérivées Partielles (1975) 123-164. Astérisque, No. 34-35. · Zbl 0344.32010
[52] C.-Y. Hsiao, Projections in several complex variables, Mémoires de la Société Mathématique de France, 123 (2010), 131 pages. · Zbl 1229.32002
[53] C.-Y. Hsiao, Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds, Memoirs of the American Mathematical Society, Vol. 254. No. 1217. American Mathematical Society, 2018. · Zbl 1412.32028
[54] C.-Y. Hsiao and G. Marinescu, Szegö kernel asymptotics and Morse inequalties on CR manifolds, Math. Z., 271 (2012), 509-573. · Zbl 1258.32014
[55] C.-Y. Hsiao and W. Zhu, Heat kernel asymptotics for Kohn Laplacians on CR manifolds, J. Funct. Anal., 284 (2023), no. 2, Paper No. 109755. · Zbl 1505.32059
[56] A. Melin and J. Sjöstrand, Fourier integral operators with complex-valued phase functions, Fourier integral operators and partial differential equations. Springer, Berlin, Heidelberg, 1975, 120-223. · Zbl 0306.42007
[57] A. Menikoff and J. Sjstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235, (1978), no. 1, p. 55-85. · Zbl 0375.35014
[58] J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), p. 85-130. · Zbl 0317.35076
[59] J.-M. Bismut, A local index theorem for non-Kähler manifolds. Math. Ann., 284(4):681-699, 1989. · Zbl 0666.58042
[60] J.-M. Bismut, The hypoelliptic Dirac operator. In Geometry and dynamics of groups and spaces, Progr. Math., volume 265, 113-246, 2008. · Zbl 1157.58011
[61] J.-M. Bismut. Hypoelliptic Laplacian and Bott-Chern cohomology. A Theorem of Riemann-Roch-Grothendieck in complex geometry. Progr. Math., volume 305, 2013. · Zbl 1273.58001
[62] J.-M. Bismut, S. Shen, and Z. Wei. Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck. arXiv:2102.08129, 2021. To appear in Progr. Math.
[63] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147-171, 1967. References · Zbl 0156.10701
[64] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry Cambridge University Press 2019, https://doi.org/10.1017/9781108677325. · Zbl 1487.53001 · doi:10.1017/9781108677325
[65] F. Baudoin, W. Grong, L. Rizzi, G. Vega-Molino H-type foliations, Differential Geom. Appl. 85 (2022), Paper No. 101952. · Zbl 1503.53059
[66] W. Bauer, A. Froehly, I. Markina, Fundamental solutions of a class of ultra-hyperbolic operators on pseudo H-type groups, Adv. Math. 369 (2020), 107186, 46 · Zbl 1440.65154
[67] W. Bauer, K. Furutani, C. Iwasaki, Spectral zeta function on pseudo H-type nilmanifolds, Indian J. Pure Appl. Math. 46 (2015), no. 4, 539 -582. · Zbl 1353.53039
[68] W. Bauer, K. Furutani, C. Iwasaki, Spectral zeta function of the sub-Laplacian on two step nilmanifolds, J. Math. Pures Appl. (9) 97 (2012), no. 3, 242 -261. · Zbl 1238.58019
[69] W. Bauer, K. Furutani, C. Iwasaki, A. Laaroussi, Spectral theory of a class of nilmanifolds attached to Clifford modules, Math. Z. 297 (2021), no. 1-2, 557 -583 · Zbl 1457.58023
[70] W. Bauer, I. Markina, A. Laaroussi, G. Vega-Molino, Local invariants and geometry of the sub-Laplacian on H-type foliations, arXiv: 2209.02168v1.
[71] P. Ciatti, Scalar products on Clifford modules and pseudo-H-type Lie algebras, Ann. Mat. Pura Appl. 178 (4), 1 -32 (2000). · Zbl 1027.17008
[72] V. Fischer, Asymptotics and zeta functions on compact nilmanifolds, J. Math. Pures Appl. (9) 160 (2022), 1 -28. · Zbl 1485.58023
[73] K. Furutani, I. Markina, Complete classification of pseudo H-type algebras: II, Geom. Ded-icata 202 (2019), 233 -264. · Zbl 1428.17017
[74] A. Laaroussi, Heat kernel asymptotics for quaternionic contact manifolds, arXiv:2103.00892.
[75] R. Montgomery, A tour of Subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, 2002. · Zbl 1044.53022
[76] Jih-Hsin Cheng, Andrea Malchiodi, and Paul Yang. On the Sobolev quotient of three-dimensional CR manifolds. arxiv: 1904.04665. 2019.
[77] G. B. Folland and E. M. Stein. Estimates for the∂ b complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27:429-522, 1974. · Zbl 0293.35012
[78] Najoua Gamara. The CR Yamabe conjecture-the case n = 1. J. Eur. Math. Soc. (JEMS), 3(2):105-137, 2001. · Zbl 0988.53013
[79] Najoua Gamara and Ridha Yacoub. CR Yamabe conjecture-the conformally flat case. Pacific J. Math., 201(1):121-175, 2001. · Zbl 1054.32020
[80] David Jerison and John M. Lee. The Yamabe problem on CR manifolds. J. Differential Geom., 25(2):167-197, 1987. · Zbl 0661.32026
[81] David Jerison and John M. Lee. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Amer. Math. Soc. 1, 1-13(1988). · Zbl 0634.32016
[82] David Jerison and John M. Lee. Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differential Geom., 29(2):303-343, 1989. · Zbl 0671.32016
[83] Xi-Nan Ma , Qianzhong Ou :A Liouville theorem for a class semilinear elliptic equations on the Heisenberg group. Advances in Mathematics 413 (2023) 108851. · Zbl 1506.35084
[84] C. Guidi, V. Martino, G. Tralli, A characterization of gauge balls in H n by horizontal curvature, to appear in Adv. Calc. Var., DOI: 10.1515/acv-2022-0058. · Zbl 07874990 · doi:10.1515/acv-2022-0058
[85] V. Martino, G Tralli, A Jellett type theorem for the Levi curvature, J. Math. Pures Appl. (9) 108 (2017), 869-884. · Zbl 1378.32027
[86] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale, Ann. Inst. Fourier (Grenoble), 39 (1989), 73-99. · Zbl 0659.35024
[87] J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Inst. HautesÉtudes Sci. Publ. Math., (1991), pp. ii+298 pp. (1992).
[88] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, (1976), 123-164. Astérisque, No. 34-35. · Zbl 0344.32010
[89] D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and geometry in several complex variables (1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, 1-23. · Zbl 0941.32002
[90] X. Dai, K. Liu, and X. Ma, On the asymptotic expansion of Bergman kernel, J. Differential Geom. 72 (2006), 1-41. · Zbl 1099.32003
[91] H. Donnelly, Spectral theory for tensor products of Hermitian holomorphic line bundles, Math. Z. 245 (2003), 31-35 · Zbl 1036.58027
[92] C.-Y. Hsiao and N. Savale, Bergman-Szegő kernel asymptotics in weakly pseudoconvex finite type cases, J. Reine Angew. Math. 791 (2022), 173-223. · Zbl 1511.32025
[93] R. Léandre, Développement asymptotique de la densité d’une diffusion dvgénérée, Forum Math. 4 (1992), 45-75. · Zbl 0749.60054
[94] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, vol. 254 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2007. · Zbl 1135.32001
[95] X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, Adv. Math. 217 (2008), pp. 1756-1815. · Zbl 1141.58018
[96] X. Ma, G. Marinescu, and N. Savale, Superconnections, Bochner Laplacians and Bergman kernels for families, (2023), in preparation.
[97] X. Ma and W. Zhang, Superconnection and family Bergman kernels, Math. Ann. (2023), to appear. · Zbl 1525.32003
[98] G. Marinescu and N. Savale, Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface, arXiv:1811.00992, (2018).
[99] G. Tian, On a set of polarized pahler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130. · Zbl 0706.53036
[100] S. Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices, (1998), 317-331. · Zbl 0922.58082
[101] S. Sun and R. Zhang Collapsing geometry of hyperkähler 4-manifolds and applications, Acta Mathematica (2022) to appear.
[102] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411. · Zbl 0369.53059
[103] D. Borthwick and T. Paul and A. Uribe, Semiclassical spectral estimates for Toeplitz oper-ators, Ann. Inst. Fourier (Grenoble) 48 (4) (1998), 1189-1229, · Zbl 0920.58059
[104] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Astérisque 34-35 (1976), 123-164. · Zbl 0344.32010
[105] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators, Annals of Mathematics Studies, 99 (1981). · Zbl 0469.47021
[106] D. Catlin, The Bergman kernel and a theorem of Tian, Trends Math. Analysis and geometry in several complex variables (Katata, 1997) (1999), 1-23. · Zbl 0941.32002
[107] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003), 1-28. · Zbl 1059.47030
[108] S.-C. Chen and M.-C. Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics 19 (2001). · Zbl 0963.32001
[109] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math-ematical Society Lecture Note Series 268 (1999). · Zbl 0926.35002
[110] C.-Y. Hsiao, Projections in several complex variables, Mém. Soc. Math. Fr. (N.S.) 123 (2010). · Zbl 1229.32002
[111] C.-Y. Hsiao and G. Marinescu. On the singularities of the Szegő projections on lower energy forms, J. Differential Geom 107 (1) (2017), 83-155. · Zbl 1398.32038
[112] A. Galasso and C.-Y. Hsiao, Functional calculus and Quantization commutes with reduction for Toeplitz operators on CR manifolds, arXiv:2112.11257.
[113] H. Herrmann, C.-Y. Hsiao, G. Marinescu and W.-C. Shen, Semi-classical spectral asymp-totics of Toeplitz operators on CR manifolds, arXiv:2303.17319.
[114] A. Loi and G. Placini, Any Sasakian structure is approximated by embeddings into spheres, arXiv:2210.00790.
[115] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Math., 254 (2007). · Zbl 1135.32001
[116] A. Melin and J. Sjöstrand. Fourier integral operators with complex-valued phase functions Lecture Notes in Math., 459 (1975), 120-223. · Zbl 0306.42007
[117] S. Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Not. 6 (1998), 317-331. References · Zbl 0922.58082
[118] D. Barilari, T. Bossio, Steiner and tube formulae in 3D contact sub-Riemannian geometry, to appear in Communications in Contemporary Mathematics (2023).
[119] K. Akutagawa, G. Carron, and R. Mazzeo, The Yamabe problem on stratified spaces, Geo-metric and Functional Analysis 24 (2014), no. 4, 1039-1079. · Zbl 1310.53034
[120] S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, Journal of Differ-ential Geometry 69 (2005), no. 2, 217-278. · Zbl 1085.53028
[121] S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Inventiones Math-ematicae 170 (2007), no. 3, 541-576. · Zbl 1130.53044
[122] G. Carron, E. Chen, and Y. Wang, The Yamabe flow on asymptotically Euclidean manifolds with nonpositive Yamabe constant, Journal of Functional Analysis 284 (2023), no. 6, Paper No. 109823, 26 pages. · Zbl 1510.53037
[123] E. Chen and Y. Wang, The Yamabe flow on asymptotically flat manifolds, arXiv e-prints (2021), arXiv:2102.07717.
[124] B.-L. Chen and X.-P. Zhu, A gap theorem for complete noncompact manifolds with nonneg-ative Ricci curvature, Communications in Analysis and Geometry 10 (2002), no. 1, 217-239. · Zbl 1011.53036
[125] B. Choi and P. Daskalopoulos, Yamabe flow: steady solitons and type II singularities, Non-linear Analysis 173 (2018), 1-18. · Zbl 1392.53071
[126] B. Chow, Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Communications on Pure and Applied Mathematics 45 (1992), 1003-1014. · Zbl 0785.53027
[127] L. Cheng and A. Zhu, Yamabe flow and ADM mass on asymptotically flat manifolds, Journal of Mathematical Physics 56 (2015), no. 10, 101507, 21 pages. · Zbl 1327.83018
[128] J. Dilts and D. Maxwell, Yamabe classification and prescribed scalar curvature in the asymp-totically Euclidean setting, Communications in Analysis and Geometry 26 (2018), no. 5, 1127-1168. · Zbl 1408.53046
[129] R. S. Hamilton, Lectures on geometric flows, unpublished (1989).
[130] J. L. Jauregui, Lower semicontinuity of the ADM mass in dimensions two through seven, Pacific Journal of Mathematics 301 (2019), no. 2, 441-466. · Zbl 1434.53036
[131] H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for “large” energies, Journal für die Reine und Angewandte Mathematik 562 (2003), 59-100. · Zbl 1079.53100
[132] R. Ye, Global existence and convergence of Yamabe flow, Journal of Differential Geometry 39 (1994), no. 1, 35-50. · Zbl 0846.53027
[133] L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260. · Zbl 1143.26002
[134] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507-549. · Zbl 0681.43012
[135] R. L. Frank, M.d.M. González, D. D. Monticelli and J. Tan, An extension problem for the CR fractional Laplacian, Adv. Math. 270 (2015), 97-137. · Zbl 1304.35747
[136] R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. Math. (2) 176 (2012), 349-381. · Zbl 1252.42023
[137] L. Roncal and S. Thangavelu, Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math. 302 (2016), 106-158. · Zbl 1348.43011
[138] L. Roncal and S. Thangavelu, An extension problem and trace Hardy inequality for the sub-Laplacian on H-type groups, Int. Math. Res. Not. IMRN (2020), no. 14, 4238-4294. · Zbl 1484.35015
[139] S. A. Barannikov. The framed Morse complex and its invariants. Singularities and bifurca-tions, Adv. Soviet Math. Vol. 21, Amer. Math. Soc. (1994) pp. 93-115. · Zbl 0996.57514
[140] G. Carlsson, A. Zomorodian. Computing persistent homology. Discrete Comput. Geom. Vol. 33 no 2 (2005) pp 249-274. · Zbl 1069.55003
[141] M. Kashiwara, P. Schapira Persistent homology and microlocal sheaf theory J. Appl. Com-put. Topol. Vol. 2 no. 1-2 (2018) pp. 83-113. · Zbl 1423.55013
[142] D. Le Peutrec, F. Nier, C. Viterbo. Bar codes of persistent cohomology and Arrhenius law for p-forms. HAL 062471644v1, to appear in Astérisque. · Zbl 07898079
[143] D. Le Peutrec, F. Nier, C. Viterbo. Precise Arrhenius law for p-forms : The Witten Laplacian and Morse-Barannikov complex. Annales Henri Poincaré Vol. 14 No 3 (2013) p. 567-610. · Zbl 1275.58018
[144] F. Le Roux, S. Seyfaddini, C. Viterbo. Barcodes and area-preserving homeomorphisms. Geom. Topol. Vol. 25 no. 6 (2021) pp. 2713-2825. · Zbl 1494.37040
[145] F. Nier. Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries. Memoirs of the American Mathematical Society No 1200 (2018). · Zbl 1419.35001
[146] F. Nier, S. Shen. Bismut hypoelliptic Laplacians for manifolds with boundaries. HAL 03278062v2, (2021) arXiv:2107.01958
[147] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115 (1959), 485-491. · Zbl 0099.43102
[148] B. Cassano, V. Franceschi, D. Krejčiřík and D. Prandi. Horizontal magnetic fields and im-proved Hardy inequalities in the Heisenberg group, Comm. in Partial Differential Equations, (2022).
[149] C. Cazacu and D. Krejčiřík. The Hardy inequality and the heat equation with magnetic field in any dimension. Comm. in Partial Differential Equations, 41(7) (2016), 1056-1088. · Zbl 1353.35244
[150] L. Fanelli, D. Krejčiřík, A. Laptev, and L. Vega. On the improvement of the Hardy inequality due to singular magnetic fields. Comm. Partial Differential Equations, 45(9) (2020), 1202-1212. · Zbl 1450.35011
[151] N. Garofalo and E. Lanconelli. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Annales de l’Institut Fourier, 40(2) (1990), 313-356. · Zbl 0694.22003
[152] A. Laptev and T. Weidl. Hardy inequalities for magnetic Dirichlet forms. In Mathematical results in quantum mechanics, Oper. Theory Adv. Appl., 108 (1998), 299-305. · Zbl 0977.26005
[153] R. Montgomery. Hearing the zero locus of a magnetic field, Communications in Mathemat-ical Physics, 168(3) (1995), 651-675. · Zbl 0827.58076
[154] M. Rumin. Formes différentielles sur les variétés de contact. Journal of Differential Geom-etry, 39(2) (1994), 281-330. · Zbl 0973.53524
[155] I. Shigekawa. Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold, Journal of Functional Analysis, 75(1) (1987), 92-127. · Zbl 0629.58023
[156] S.-Y.A, Chang and P. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. (2) 142 (1995), no. 1, 171-212. · Zbl 0842.58011
[157] S. Donaldson and R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), no. 2, 197-239. · Zbl 0671.53029
[158] A. Floer, Self-dual conformal structures on ℓCP 2 , J. Differential Geom. 33 (1991), no. 2, 551-573. · Zbl 0736.53046
[159] A. R. Gover and L. Peterson, Conformally Invariant Powers of the Laplacian, Q-Curvature, and Tractor Calculus, Comm. Math. Physics 235 (2003), 339-378. · Zbl 1022.58014
[160] A. D. King and K. Kotschick, The deformation theory of anti-self-dual conformal structures, Math. Ann. 294 (1992), no. 4, 591-609. · Zbl 0765.58005
[161] C. LeBrun, On the topology of self-dual 4-manifolds, Proc. Amer. Math. Soc. 98 (1986), no. 4, 637-640. · Zbl 0606.53029
[162] C. LeBrun, Explicit self-dual metrics on CP 2 ♯ • • • ♯CP 2 , J. Diff. Geom. 34 (1991), no. 1, 223-253. · Zbl 0725.53067
[163] Y. Sun Poon, Compact self-dual manifolds with positive scalar curvature, J. Diff. Geom. 24 (1986), no. 1, 97-132. · Zbl 0583.53054
[164] Y. Sun Poon, On the algebraic structure of twistor spaces, J. Diff. Geom. 36 (1992), no. 2, 451-491. · Zbl 0742.53024
[165] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, In Global Analysis (Papers in Honor of K. Kodaira), pages 355 -365. Univ. Tokyo Press, Tokyo, 1969. · Zbl 0199.25401
[166] C. H. Taubes, The existence of anti-self-dual conformal structures, J. Diff. Geom. 36 (1992), no. 1, 163-253. · Zbl 0822.53006
[167] J. Viaclovsky, Critical metrics for Riemannian curvature functionals. In Geometric analysis, 197-274, IAS/Park City Math. Ser., 22, Amer. Math. Soc., Providence, RI, 2016. References · Zbl 1360.53005
[168] Jean-Michel Bismut, The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., 18(2):379-476(electronic), 2005. · Zbl 1065.35098
[169] Jean-Michel Bismut, Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies 177 (2011), Princeton University Press, Princeton, NJ. · Zbl 1234.58001
[170] Jean-Michel Bismut. Eta invariants and the hypoelliptic Laplacian. J. Eur. Math. Soc. (JEMS), 21(8):2355-2515, 2019. · Zbl 1479.58020
[171] Jean-Michel Bismut and Shu Shen. Geometric orbital integrals and the center of the en-veloping algebra. Compos. Math., 158(6):1189-1253, 2022. · Zbl 1503.22008
[172] Bingxiao Liu. Hypoelliptic Laplacian and twisted trace formula (to appear at Annales de l’Institut Fourier). arXiv:1910.11382, 2019.
[173] Xiaonan Ma. Geometric hypoelliptic Laplacian and orbital integrals [after Bismut, Lebeau and Shen]. Number 407, Exp. No. 1130, 333-389. 2019. Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120-1135. · Zbl 1483.58008
[174] Clotilde Fermanian-Kammerer and Veronique Fischer, Semi-classical analysis on H-type groups, Sci. China Math., 62 (2019), no. 6, 1057-1086. ArXiv:1812.00056. · Zbl 1430.35284
[175] Clotilde Fermanian-Kammerer and Veronique Fischer, Defect measures on graded lie groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 21 (2020), 207-291. ArXiv:1707.04002. · Zbl 1469.35272
[176] Clotilde Fermanian-Kammerer and Cyril Letrouit, Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type. J.Éc. polytech. Math., 8 (2021), 1459-1513. Hal-02951662v2. · Zbl 1475.35377
[177] Clotilde Fermanian-Kammerer and Veronique Fischer, Quantum evolution and sub-laplacian operators on groups of Heisenberg type, J. Spectr. Theory, 11 (2021), no. 3, 1313-1367. ArXiv:1910.14486. · Zbl 1484.58014
[178] Clotilde Fermanian-Kammerer, Veronique Fischer and Steven Flynn, Geometric invariance of the semi-classical calculus on nilpotent graded Lie groups, J. Geom. Anal., 33 (2023), No 4, Paper No 127 (in open access). · Zbl 1516.22007
[179] Clotilde Fermanian-Kammerer, Veronique Fischer and Steven Flynn. Some remarks on semi-classical analysis on two-step nilmanifolds. To appear in the Proceedings of IQM22, Milano, Italy. Arxiv:2112.11509.
[180] Veronique Fischer, Towards semi-classical analysis for sub-elliptic operators, Bruno Pini Mathematical Analysis Seminar, 12 (2021), pp 31-52. ArXiv:2111.09854. · Zbl 1500.43006
[181] Veronique Fischer, Asymptotics and zeta functions on nilmanifolds, J. Math. Pures et Appl., 160 (2022), No 9, pp. 1-28. ArXiv:2112.01246. · Zbl 1485.58023
[182] Veronique Fischer. Semiclassical analysis on compact nilmanifolds. ArXiv:2101.07027
[183] Quantum Limits for subelliptic operator, https://sites.google.com/view/veroniquefischer/subelliptic-ql References
[184] R. Beals and P. Greiner, Calculus on Heisenberg manifolds, Annals of Mathematics Studies, vol. 119, Princeton University Press, Princeton, NJ, 1988. · Zbl 0654.58033
[185] A. Nagel and E.M. Stein, Lectures on pseudodifferential operators: regularity theorems and applications to nonelliptic problems, Mathematical Notes, vol. 24, Princeton University Press, Princeton, N.J., 1979. · Zbl 0415.47025
[186] A. Nagel, F. Ricci, E.M. Stein and S. Wainger, Singular integrals with flag kernels on homogeneous groups, I, Rev. Mat. Iberoam. 28 (2012), no. 3, 631-722. · Zbl 1253.42009
[187] A. Nagel, F. Ricci, E.M. Stein and S. Wainger, Algebras of singular integral operators with kernels controlled by multiple norms, Mem. Amer. Math. Soc. 256 (2018), no. 1230, vii+141 pp. · Zbl 1445.42001
[188] D.H. Phong and E.M. Stein, Some further classes of pseudodifferential and singular integral operators arising in boundary value problems. I. Composition of operators, Amer. J. Math. 104 (1982), no. 1, 141-172. · Zbl 0526.35079
[189] R. Ponge, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Mem. Amer. Math. Soc. 194 (2008), no. 906, viii+ 134 · Zbl 1143.58014
[190] E.M. Stein and P.L. Yung, Pseudodifferential operators of mixed type adapted to distribu-tions of k-planes, Math. Res. Lett. 20 (2013), no. 6, 1183-1208. · Zbl 1312.47060
[191] N. Garofalo, G. Tralli, A universal heat semigroup characterisation of Sobolev and BV spaces in Carnot groups, preprint (2022).
[192] E. De Giorgi, Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. 36 (1954), 191-213. · Zbl 0055.28504
[193] M. van den Berg, P. Gilkey, Heat flow out of a compact manifold, J. Geom. Anal. 25 (2015), 1576-1601. · Zbl 1322.58017
[194] L. Angiuli, U. Massari, M. Miranda Jr., Geometric properties of the heat content, Manuscripta Math. 140 (2013), 497-529. · Zbl 1260.49078
[195] A. Savo, Uniform estimates and the whole asymptotic series of the heat content on mani-folds, Geom. Dedicata 73 (1998), 181-214. · Zbl 0949.58028
[196] L. Rizzi, T. Rossi, Heat content asymptotics for sub-Riemannian manifolds, J. Math. Pures Appl. 148 (2021), 267-307. · Zbl 1459.35364
[197] P. Guan, P. and J. Li, The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221 (2009), no. 5, 1725-1732. · Zbl 1170.53058
[198] I. Nunes, On stable constant mean curvature surfaces with free boundary. Math. Z. 287 (2017), no. 1-2, 473-479. · Zbl 1375.53017
[199] J. Scheuer, G. Wang and C. Xia, Alexandrov-Fenchel inequalities for convex hypersurfaces with free boundary in a ball, J. Differential Geom. 120 (2022), no. 2, 345-373 · Zbl 1494.53045
[200] A. Ros and E. Vergasta, Stability for hypersurfaces of constant mean curvature with free boundary. Geom. Dedicata 56 (1995), no. 1, 19-33. · Zbl 0912.53009
[201] G. Wang, L. Weng and C. Xia, Alexandrov-Fenchel inequalities for convex hypersurfaces in the half-space with capillary boundary, Math. Ann. https://doi.org/10.1007/s00208-023-02571-4 · Zbl 1543.53088 · doi:10.1007/s00208-023-02571-4
[202] G. Wang and C. Xia, Uniqueness of stable capillary hypersurfaces in a ball. Math. Ann. 374 (2019), no. 3-4, 1845-1882. Reporter: Bingxiao Liu · Zbl 1444.53040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.