×

Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group. (English) Zbl 1348.43011

The authors prove analogues of Hardy-type inequalities for fractional powers of the sublaplacian \(\mathcal{L}\) on the Heisenberg group.
Instead of considering powers of \(\mathcal{L}\) the authors consider conformally invariant fractional powers \(\mathcal{L}_{s}\). From the inequalities for \(\mathcal{L}_{s}\) the authors deduce corresponding inequalities for the fractional powers \(\mathcal{L}^{s}\).
The authors prove two versions of such inequalities depending on whether the weights involved are non-homogeneous or homogeneous.
In the non-homogenuos case, the constant arising in the Hardy inequaltiy turns out to be optimal. In order to get the results, ground state representations are used.
In the homogeneous case, the key ingredients to obtain the results are some explicit integral representations for the fractional powers of the sublaplacian and a generalized result by M. Cowling and U. Haagerup [Invent. Math. 96, No. 3, 507–549 (1989; Zbl 0681.43012)].
The approach to prove the integral representations is via the language of semigroups. As a consequence of the Hardy inequalities the authors also obtain versions of the Heisenberg uncertainty inequality for the fractional sublaplacian.

MSC:

43A80 Analysis on other specific Lie groups
22E30 Analysis on real and complex Lie groups
26D15 Inequalities for sums, series and integrals
35A08 Fundamental solutions to PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

Citations:

Zbl 0681.43012

References:

[1] Adimurthi; Sekar, A., Role of the fundamental solution in Hardy-Sobolev-type inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 136, 1111-1130 (2006) · Zbl 1124.35003
[2] D’Ambrosio, L., Some Hardy inequalities on the Heisenberg group, Differ. Equ., 40, 552-564 (2004) · Zbl 1073.22003
[3] D’Ambrosio, L., Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc., 132, 725-734 (2004) · Zbl 1049.35077
[4] Askour, N.; Mouayn, Z., Resolvent kernel for the Kohn Laplacian on Heisenberg groups, Electron. J. Differential Equations, 69 (2002), (electronic) · Zbl 1004.47002
[5] Bahouri, H.; Chemin, J-Y.; Gallagher, I., Refined Hardy inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5, 3, 375-391 (2006) · Zbl 1121.43006
[6] Beckner, W., Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc., 123, 1897-1905 (1995) · Zbl 0842.58077
[7] Beckner, W., On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc., 129, 1233-1246 (2000) · Zbl 0987.47037
[8] Beckner, W., Pitt’s inequality with sharp convolution estimates, Proc. Amer. Math. Soc., 136, 1871-1885 (2008) · Zbl 1221.42016
[9] Beckner, W., Pitt’s inequality and the fractional Laplacian: sharp error estimates, Forum Math., 24, 177-209 (2012) · Zbl 1244.42005
[10] Berenstein, C.; Chang, D-C.; Tie, J., Laguerre Calculus and Its Applications on the Heisenberg Group, AMS/IP Studies in Advanced Mathematics, vol. 22 (2001), American Mathematical Society/International Press: American Mathematical Society/International Press Providence, RI/Somerville, MA · Zbl 0986.22008
[11] Branson, T. P.; Fontana, L.; Morpurgo, C., Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, Ann. of Math. (2), 177, 1-52 (2013) · Zbl 1334.35366
[12] Branson, T. P.; Ólafsson, G.; Ørsted, B., Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal., 135, 163-205 (1996) · Zbl 0841.22011
[13] Ciatti, P.; Cowling, M. G.; Ricci, F., Hardy and uncertainty inequalities on stratified Lie groups, Adv. Math., 277, 365-387 (2015) · Zbl 1322.22010
[14] Cowling, M.; Haagerup, U., Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., 96, 507-549 (1989) · Zbl 0681.43012
[15] Danielli, D.; Garofalo, N.; Phuc, N. C., Hardy-Sobolev type inequalities with sharp constants in Carnot-Carathéodory spaces, Potential Anal., 34, 223-242 (2011) · Zbl 1221.35108
[16] Folland, G. B., A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79, 373-376 (1973) · Zbl 0256.35020
[17] Folland, G. B., Harmonic Analysis in Phase Space, Ann. of Math. Stud., vol. 122 (1989), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0682.43001
[18] Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28 (1982), Princeton University Press/University of Tokyo Press: Princeton University Press/University of Tokyo Press Princeton, NJ/Tokyo · Zbl 0508.42025
[19] Frank, R. L.; González, M.d. M.; Monticelli, D. D.; Tan, J., An extension problem for the CR fractional Laplacian, Adv. Math., 270, 97-137 (2015) · Zbl 1304.35747
[20] Frank, R. L.; Lieb, E. H., Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2), 176, 349-381 (2012) · Zbl 1252.42023
[21] Frank, R. L.; Lieb, E. H.; Seiringer, R., Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21, 925-950 (2008) · Zbl 1202.35146
[22] Garofalo, N.; Lanconelli, E., Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble), 40, 313-356 (1990) · Zbl 0694.22003
[23] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series and Products (2007), Elsevier/Academic Press: Elsevier/Academic Press Amsterdam · Zbl 1208.65001
[24] Herbst, I. W., Spectral theory of the operator \((p^2 + m^2)^{1 / 2} - Z e^2 / r\), Comm. Math. Phys., 53, 285-294 (1977) · Zbl 0375.35047
[25] Huang, J., A heat kernel version of Cowling-Price theorem for the Laguerre hypergroup, Proc. Indian Acad. Sci., 120, 73-81 (2010) · Zbl 1198.43005
[26] Huang, J.; Liu, H., The weak type \((1, 1)\) estimates of maximal functions on the Laguerre hypergroup, Canad. Math. Bull., 53, 491-502 (2010) · Zbl 1204.43007
[27] Johnson, K. D.; Wallach, N. R., Composition series and intertwining operators for the spherical principal series I, Trans. Amer. Math. Soc., 229, 137-173 (1977) · Zbl 0349.43010
[28] Stinga, P. R.; Torrea, J. L., Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations, 35, 2092-2122 (2010) · Zbl 1209.26013
[29] Taylor, M. E., Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, vol. 22 (1986), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0604.43001
[30] Thangavelu, S., Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, vol. 159 (1998), Birkhäuser: Birkhäuser Boston, MA · Zbl 0892.43001
[31] Thangavelu, S., An Introduction to the Uncertainty Principle. Hardy’s Theorem on Lie Groups, Progress in Mathematics, vol. 217 (2004), Birkhäuser: Birkhäuser Boston, MA, with a foreword by Gerald B. Folland · Zbl 1188.43010
[32] Tricomi, F. G.; Erdélyi, A., The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1, 133-142 (1951) · Zbl 0043.29103
[33] Yafaev, D., Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168, 121-144 (1999) · Zbl 0981.26016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.